Physically based model for predicting volume shrinkage in chemically amplified resists

Improvements in the modeling of chemically amplified resist systems are necessary to extract maximum possible information form limited experimentation. Previous post- exposure bake models have neglected volume shrinkage, thus violating the continuity equations used to model the process. This work aims at describing the kinetics of the post-exposure bake process by tracking the volume shrinkage observed in both low and high activation energy resists. Both static and dynamic models are derived and corroborated with experimental results for Shipley UV5 and AZ 2549 resists. A global simulation technique is then used in conjunction with the models to extract the lithography parameters for these resists.