The influence of polarization functions on molecular orbital hydrogenation energies

Polarization functions are added in two steps to a split-valence extended gaussian basis set: d-type gaussians on the first row atoms C. N, O and F and p-type gaussians on hydrogen. The same d-exponent of 0.8 is found to be satisfactory for these four atoms and the hydrogen p-exponent of 1.1 is adequate in their hydrides. The energy lowering due to d functions is found to depend on the local symmetry around the heavy atom. For the particular basis used, the energy lowerings due to d functions for various environments around the heavy atom are tabulated. These bases are then applied to a set of molecules containing up to two heavy atoms to obtain their LCAO-MO-SCF energies. The mean absolute deviation between theory and experiment (where available) for heats of hydrogenation of closed shell species with two non-hydrogen atoms is 4 kcal/mole for the basis set with full polarization. Estimates of hydrogenation energy errors at the Hartree-Fock limit, based on available calculations, are given.ZusammenfassungPolarisationsfunktionen werden in zwei Schritten einer Basis von Gauß-Orbitalen hinzugefügt: d-Gauß-Funktionen für die Atome C, N, O und F und p-Gaußfunktionen für H. In allen Fällen ist ein d-Exponent von 0.8 bzw. ein p-Exponent von 1.1 bei den Hydriden befriedigend. Dabei hängt die Energieerniedrigung, die tabelliert wiedergegeben wird, von der lokalen Symmetrie am schweren Kern ab. Mit dieser Basis wird dann die LCAO-MO-SCF-Energie für Moleküle mit 2 schweren Atomen berechnet. Die mittlere absolute Abweichung zwischen Theorie und Experiment für Hydrierungswärmen von solchen Molekülen (mit abgeschlossener Schale) ist 4 kcal/Mol bei Einschluß aller Polarisationsfunktionen. Der Schätzwert für Hydrierungswärmen in der Hartree-Fock-Grenze wird ebenfalls angegeben.

[1]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[2]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[3]  A. C. Wahl Analytic Self‐Consistent Field Wavefunctions and Computed Properties for Homonuclear Diatomic Molecules , 1964 .

[4]  L. C. Snyder Heats of Reaction from Hartree—Fock Energies of Closed-Shell Molecules , 1967 .

[5]  M. Gordon,et al.  Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. , 1967, Journal of the American Chemical Society.

[6]  L. C. Snyder,et al.  Heats of reaction from self-consistent-field energies of closed-shell molecules , 1969 .

[7]  Jules W. Moskowitz,et al.  Water Molecule Interactions , 1970 .

[8]  Leo Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation , 1970 .

[9]  E. Clementi,et al.  Electronic Structure and Inversion Barrier of Ammonia , 1970 .

[10]  T. Dunning Gaussian Basis Functions for Use in Molecular Calculations. IV. The Representation of Polarization Functions for the First Row Atoms and Hydrogen , 1971 .

[11]  Leo Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. VII. Systematic study of energies, conformations, and bond interactions , 1971 .

[12]  L. Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. VIII. Geometries, energies, and polarities of C3 hydrocarbons , 1971 .

[13]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[14]  H. Schaefer,et al.  Methane as a Numerical Experiment for Polarization Basis Function Selection , 1971 .

[15]  G. Diercksen SCF-MO-LCGO studies on hydrogen bonding. The water dimer , 1971 .

[16]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[17]  I. Csizmadia,et al.  Configuration Interaction Wavefunctions and Computed Inversion Barriers for NH3 and CH3 , 1972 .