Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb(3+),Er(3+) crystals via annealing.

Upconversion materials show great potential in converting infrared light to visible for many optoelectronic and photovoltaic devices. One of the most promising upconverting materials is Yb(3+),Er(3+)- doped β-NaYF4. In this study, annealing is shown to have a significant impact on the phase, morphology, and upconversion luminescence of β-NaYF4:Yb(3+),Er(3+) crystals of varying sizes (300 nm, 700 nm, and 2.3 μm, respectively) prepared by hydrothermal synthesis stabilized with sodium citrate. Upconversion luminescence is maximized via annealing while maintaining crystal shape and size dispersity up to a temperature dependent on initial size, with NIR-to-visible quantum yields of 2-5%. Further temperature increases result in growth and agglomeration, increasing luminescence, followed by transformation to the α-cubic phase resulting in decreases in overall upconversion performance and shifts to dominant red emission. This study establishes the critical link between annealing temperature and maximal upconversion luminescence in β-NaYF4:Yb(3+),Er(3+) crystals, while maintaining particle morphology, which can be very important for technological application.

[1]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[2]  R. E. Thoma,et al.  The Sodium Fluoride-Lanthanide Trifluoride Systems , 1966 .

[3]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[4]  Jun Lin,et al.  Two-Dimensional β-NaLuF4 Hexagonal Microplates , 2008 .

[5]  Cunhai Dong,et al.  Nonstatistical Dopant Distribution of Ln3+-Doped NaGdF4 Nanoparticles , 2011 .

[6]  Gan-Moog Chow,et al.  Water -soluble NaYF4:Yb,Er (Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence , 2007 .

[7]  G. Demopoulos,et al.  Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF₄:Er³⁺/Yb³⁺ nanoplatelets. , 2011, ACS applied materials & interfaces.

[8]  Botao Wu,et al.  Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod. , 2013, Nano letters.

[9]  Lijin Tian,et al.  Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals , 2007 .

[10]  R. A. McFarlane,et al.  High-power visible upconversion laser. , 1991, Optics letters.

[11]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[12]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[13]  D. Zhao,et al.  Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. , 2009, Chemistry.

[14]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[15]  Hong Zhang,et al.  Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence , 2009 .

[16]  Wenjun Yang,et al.  Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .

[17]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[18]  M. Tan,et al.  Comprehensive Study on the Size Effects of the Optical Properties of NaYF4:Yb,Er Nanocrystals , 2013 .

[19]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[20]  Gan-Moog Chow,et al.  Effects of size and surface on luminescence properties of submicron upconversion NaYF_4:Yb,Er particles , 2009 .

[21]  Chi-Hwan Han,et al.  Synthesis of Amorphous Er 3+ -Yb 3+ Co-doped TiO 2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells , 2009 .

[22]  Shufen Zhang,et al.  Upconversion photoluminescence enhancement and modulation of NaYF4:Yb, Er through using different ligands , 2013 .

[23]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[24]  G. Demopoulos,et al.  Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β NaYF4:Er3+,Yb3+ crystals , 2013 .

[25]  Mingmei Wu,et al.  Controlled Growth and Up‐Conversion Improvement of Sodium Yttrium Fluoride Crystals , 2013 .

[26]  W.G.J.H.M. van Sark,et al.  Upconverter solar cells: materials and applications , 2011 .

[27]  M. Yoshimura,et al.  Size-dependent upconversion luminescence and quenching mechanism of LiYF 4 : Er 3+ /Yb 3+ nanocrystals with oleate ligand adsorbed , 2013 .

[28]  Lisha Zhang,et al.  980‐nm Laser‐Driven Photovoltaic Cells Based on Rare‐Earth Up‐Converting Phosphors for Biomedical Applications , 2009 .

[29]  G. Ozin,et al.  Absolute quantum yields in NaYF4:Er,Yb upconverters – synthesis temperature and power dependence , 2012 .

[30]  Yan Li,et al.  Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging , 2010 .

[31]  Ya-Wen Zhang,et al.  Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals , 2007 .

[32]  R. Sam Niedbala,et al.  Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.