Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach

This paper considers the design of state observers for Lur'e systems with multivalued mappings in the feedback path. In particular, we focus on maximal monotone mappings that that do not require any compactness and local boundedness properties and include various models for relays, friction characteristics and complementarity conditions. We propose two types of observers that are constructed by rendering a suitable operator passive in an appropriate sense. The well-posedness properties of the observer dynamics are carefully analyzed and the global asymptotic stability of the observation error is formally proven.

[1]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[2]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..

[3]  Daniel Goeleven,et al.  Variational and Hemivariational Inequalities : Theory, Methods and Applications , 2003 .

[4]  Jian-Xin Xu,et al.  A new periodic adaptive control approach for time-varying parameters with known periodicity , 2004, IEEE Transactions on Automatic Control.

[5]  Bernard Brogliato,et al.  Observer design for Lur'e systems with monotone multivalued mappings , 2005 .

[6]  Rui Yan,et al.  On Repetitive Learning Control for Periodic Tracking Tasks , 2006, IEEE Transactions on Automatic Control.

[7]  J. Aubin,et al.  Observability of systems under uncertainty , 1989 .

[8]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[9]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[10]  Zhihua Qu,et al.  Asymptotic learning control for a class of cascaded nonlinear uncertain systems , 2002, IEEE Trans. Autom. Control..

[11]  YangQuan Chen,et al.  Iterative Learning Control: Convergence, Robustness and Applications , 1999 .

[12]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[13]  Domitilla Del Vecchio,et al.  Adaptive Learning Control for Feedback Linearizable Systems , 2003, Eur. J. Control.

[14]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[15]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[16]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[17]  J.A. Moreno,et al.  Dissipative Design of Observers for Multivalued Nonlinear Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  K. Deimling Multivalued Differential Equations , 1992 .

[19]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[20]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[21]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[22]  Lionel Thibault,et al.  Relaxation of an optimal control problem involving a perturbed sweeping process , 2005, Math. Program..

[23]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[24]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[25]  Arjan van der Schaft,et al.  The complementary-slackness class of hybrid systems , 1996, Math. Control. Signals Syst..

[26]  Zhihua Qu,et al.  Nonlinear learning control for a class of nonlinear systems , 2001, Autom..

[27]  N. Wouw,et al.  Stability and Convergence of Mechanical Systems with Unilateral Constraints , 2008 .

[28]  Bernard Brogliato,et al.  Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  Bernard Brogliato Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2004, Syst. Control. Lett..

[30]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  B. Brogliato,et al.  Design of observers and certainty equivalence controllers for differential inclusions: a passivity approach , 2009 .