Sparse reduced-order modelling: sensor-based dynamics to full-state estimation

We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be decomposed into four building blocks. First, the sensor signals are lifted to a dynamic feature space without false neighbours. Second, we identify a sparse human-interpretable nonlinear dynamical system for the feature state based on the sparse identification of nonlinear dynamics (SINDy). Third, if PIV snapshots are available, a local linear mapping from the feature state to the velocity field is performed to reconstruct the full state of the system. Fourth, a generalized feature-based modal decomposition identifies coherent structures that are most dynamically correlated with the linear and nonlinear interaction terms in the sparse model, adding interpretability. Steps 1 and 2 define a black-box model. Optional steps 3 and 4 lift the black-box dynamics to a grey-box model in terms of the identified coherent structures, if non-time-resolved full-state data are available. This grey-box modelling strategy is successfully applied to the transient and post-transient laminar cylinder wake, and compares favourably with a proper orthogonal decomposition model. We foresee numerous applications of this highly flexible modelling strategy, including estimation, prediction and control. Moreover, the feature space may be based on intrinsic coordinates, which are unaffected by a key challenge of modal expansion: the slow change of low-dimensional coherent structures with changing geometry and varying parameters.

[1]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[2]  Parviz Moin,et al.  Stochastic estimation of organized turbulent structure: homogeneous shear flow , 1988, Journal of Fluid Mechanics.

[3]  Gilead Tadmor,et al.  Reduced-order models for closed-loop wake control , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  B. R. Noack,et al.  On long-term boundedness of Galerkin models , 2013, Journal of Fluid Mechanics.

[5]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[6]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  C. Rowley,et al.  Low-dimensional models of a temporally evolving free shear layer , 2009, Journal of Fluid Mechanics.

[9]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[10]  K. Hasselmann,et al.  Techniques of Linear Prediction, With Application to Oceanic and Atmospheric Fields in the Tropical Pacific (Paper 9R0319) , 1979 .

[11]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[12]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[13]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[14]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[15]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[16]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[17]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[18]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[19]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[20]  Bernd R. Noack,et al.  From snapshots to modal expansions – bridging low residuals and pure frequencies , 2016, Journal of Fluid Mechanics.

[21]  Peter Jordan,et al.  Qualitative dynamics of wavepackets in turbulent jets , 2016 .

[22]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[23]  Steven L. Brunton,et al.  Data-Driven Sparse Sensor Placement , 2017, ArXiv.

[24]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[25]  Hod Lipson,et al.  Automated reverse engineering of nonlinear dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[26]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[27]  E HintonGeoffrey,et al.  ImageNet classification with deep convolutional neural networks , 2017 .

[28]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[29]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[30]  Wen-Xu Wang,et al.  Predicting catastrophes in nonlinear dynamical systems by compressive sensing. , 2011, Physical review letters.

[31]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[32]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[33]  Clarence W. Rowley,et al.  Parameter-Varying Aerodynamics Models for Aggressive Pitching-Response Prediction , 2017 .

[34]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[35]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[36]  Bryan Glaz,et al.  Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework , 2010 .

[37]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[38]  Mark N. Glauser,et al.  Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure , 1994 .

[39]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[40]  R. Henderson,et al.  Three-dimensional Floquet stability analysis of the wake of a circular cylinder , 1996, Journal of Fluid Mechanics.

[41]  François Gallaire,et al.  Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. , 2014, Physical review letters.

[42]  B. Weare,et al.  Examples of Extended Empirical Orthogonal Function Analyses , 1982 .

[43]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[44]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[45]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[46]  Trent McConaghy,et al.  FFX: Fast, Scalable, Deterministic Symbolic Regression Technology , 2011 .

[47]  Steven L. Brunton,et al.  Sparse Identification of Nonlinear Dynamics with Control (SINDYc) , 2016, 1605.06682.

[48]  Andrew J. Kurdila,et al.  Reduced Order Nonlinear Navier-Stokes Models for Synthetic Jets , 2002 .

[49]  Alain Dervieux,et al.  Reduced-order modeling of transonic flows around an airfoil submitted to small deformations , 2011, J. Comput. Phys..

[50]  Peter Jordan,et al.  Qualitative dynamics of wave packets in turbulent jets , 2016, 1608.06750.

[51]  Michael Schumm,et al.  Self-excited oscillations in the wake of two-dimensional bluff bodies and their control , 1994, Journal of Fluid Mechanics.

[52]  Peter J. Schmid,et al.  A dynamic observer to capture and control perturbation energy in noise amplifiers , 2014, Journal of Fluid Mechanics.

[53]  Steven L. Brunton,et al.  Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics , 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[54]  Karthikeyan Duraisamy,et al.  Machine Learning Methods for Data-Driven Turbulence Modeling , 2015 .

[55]  H. Akaike A new look at the statistical model identification , 1974 .

[56]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[57]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[58]  Hayden Schaeffer,et al.  Sparse model selection via integral terms. , 2017, Physical review. E.

[59]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[60]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[61]  Weiwei Zhang,et al.  Efficient Method for Limit Cycle Flutter Analysis Based on Nonlinear Aerodynamic Reduced-Order Models , 2012 .

[62]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[63]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[64]  J N Kutz,et al.  Model selection for dynamical systems via sparse regression and information criteria , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[65]  Peter J. Schmid,et al.  Linear Closed-Loop Control of Fluid Instabilities and Noise-Induced Perturbations: A Review of Approaches and Tools , 2016 .

[66]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[67]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[68]  Robert J. Martinuzzi,et al.  Modal energy flow analysis of a highly modulated wake behind a wall-mounted pyramid , 2016, Journal of Fluid Mechanics.

[69]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[70]  Paul T. Boggs,et al.  Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics , 2014, SIAM J. Sci. Comput..

[71]  Steven L. Brunton,et al.  State-space model identification and feedback control of unsteady aerodynamic forces , 2014, 1401.1473.

[72]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[73]  Clarence W. Rowley,et al.  Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields , 2013 .

[74]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[75]  Hessam Babaee,et al.  A variational principle for the extraction of time-dependent modes associated with transient instabilities , 2015 .

[76]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[77]  Steven L. Brunton,et al.  Constrained sparse Galerkin regression , 2016, Journal of Fluid Mechanics.

[78]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[79]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[80]  F. Takens Detecting strange attractors in turbulence , 1981 .

[81]  Peter J. Schmid,et al.  Recursive dynamic mode decomposition of transient and post-transient wake flows , 2016, Journal of Fluid Mechanics.

[82]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[83]  T K Sengupta,et al.  Enstrophy-based proper orthogonal decomposition for reduced-order modeling of flow past a cylinder. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[85]  Nathan E. Murray,et al.  Modified quadratic stochastic estimation of resonating subsonic cavity flow , 2007 .

[86]  H. Schaeffer,et al.  Learning partial differential equations via data discovery and sparse optimization , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  Jm Colebrook,et al.  Continuous plankton records - zooplankton and environment, northeast atlantic and north-sea, 1948-1975 , 1978 .

[88]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[89]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[90]  Giang Tran,et al.  Exact Recovery of Chaotic Systems from Highly Corrupted Data , 2016, Multiscale Model. Simul..

[91]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[92]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[93]  N. Fabbiane,et al.  Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows , 2014, 1402.1746.

[94]  Steven L. Brunton,et al.  Machine Learning Control – Taming Nonlinear Dynamics and Turbulence , 2016, Fluid Mechanics and Its Applications.

[95]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[96]  A. Zebib Stability of viscous flow past a circular cylinder , 1987 .

[97]  Mehdi Habibi,et al.  Evaporation of water: evaporation rate and collective effects , 2016, Journal of Fluid Mechanics.

[98]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[99]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[100]  H. Babaee,et al.  A minimization principle for the description of modes associated with finite-time instabilities , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[101]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[102]  E Kaiser,et al.  Sparse identification of nonlinear dynamics for model predictive control in the low-data limit , 2017, Proceedings of the Royal Society A.

[103]  R. Goodman,et al.  Application of neural networks to turbulence control for drag reduction , 1997 .

[104]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[105]  Gilead Tadmor,et al.  Mean field representation of the natural and actuated cylinder wake , 2010 .

[106]  Remi Manceau,et al.  Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model , 2001, Journal of Fluid Mechanics.

[107]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[108]  David R. Williams,et al.  Reduced-order unsteady aerodynamic models at low Reynolds numbers , 2013, Journal of Fluid Mechanics.

[109]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[110]  Aswin C. Sankaranarayanan,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[111]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[112]  Kunihiko Taira,et al.  Network-theoretic approach to sparsified discrete vortex dynamics , 2015, Journal of Fluid Mechanics.