Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method

A polynomial preserving recovery method is introduced for over-penalized symmetric interior penalty discontinuous Galerkin solutions to a quasi-linear elliptic problem. As a post-processing method, the polynomial preserving recovery is superconvergent for the linear and quadratic elements under specified meshes in the regular and chevron patterns, as well as general meshes satisfying Condition ( ? , ? ) . By means of the averaging technique, we prove the polynomial preserving recovery method for averaged solutions is superconvergent, satisfying similar estimates as those for conforming finite element methods. We deduce superconvergence of the recovered gradient directly from discontinuous solutions and naturally construct an a posteriori error estimator. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact. Extensive numerical results consistent with our analysis are presented.

[1]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[2]  James Serrin,et al.  Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form , 1971 .

[3]  Xue-Cheng Tai,et al.  Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..

[4]  Lunji Song,et al.  Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems , 2015 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[6]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[7]  Lunji Song,et al.  Fully discrete interior penalty discontinuous Galerkin methods for nonlinear parabolic equations , 2012 .

[8]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[9]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[10]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[11]  Endre Süli,et al.  Optimal Error Estimates for the hp-Version Interior Penalty Discontinuous Galerkin Finite Element Method , 2005 .

[12]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..

[13]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[14]  Yunqing Huang,et al.  Interior penalty DG methods for Maxwell's equations in dispersive media , 2011, J. Comput. Phys..

[15]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[16]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[17]  Zhimin Zhang,et al.  Polynomial preserving recovery for anisotropic and irregular grids , 2004 .

[18]  Zhimin Zhang,et al.  Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..

[19]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[20]  Wolfgang Dahmen,et al.  A Multilevel Preconditioner for the Interior Penalty Discontinuous Galerkin Method , 2008, SIAM J. Numer. Anal..

[21]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[22]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[23]  Zhimin Zhang,et al.  Polynomial preserving recovery for quadratic elements on anisotropic meshes , 2012 .

[24]  Susanne C. Brenner,et al.  A weakly over-penalized symmetric interior penalty method for the biharmonic problem. , 2010 .

[25]  Susanne C. Brenner Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. , 2004 .

[26]  Zhimin Zhang,et al.  Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio , 2008 .

[27]  Bo Dong,et al.  An Analysis of the Minimal Dissipation Local Discontinuous Galerkin Method for Convection–Diffusion Problems , 2007, J. Sci. Comput..

[28]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[29]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[30]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[31]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[32]  Susanne C. Brenner,et al.  Higher order weakly over-penalized symmetric interior penalty methods , 2012, J. Comput. Appl. Math..

[33]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[34]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[35]  Yong-Tao Zhang,et al.  Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..

[36]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[37]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[38]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[39]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[40]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[41]  Victor Ginting,et al.  Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems , 2011, J. Sci. Comput..

[42]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..