One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters

We report a one-pot method for synthesizing atomically monodisperse Au25 nanoclusters stabilized with various functionalized thiols. This approach permits facile incorporation of specific functionality [such as –OH, –COOH, and atom transfer radical polymerization initiator –OC(O)C(CH3)2Br] into the protecting thiol ligand shell and provides convenient access to new types of Au25 nanoclusters inaccessible by the previous two-phase approach. Importantly, a distinct “size-focusing” process was identified in the growth process of Au25 nanoclusters in the one-pot reaction. This facile, one-pot synthesis of thiol-functionalized Au25 nanoclusters allows for the development of specific surface chemistry for practical applications of such nanoclusters, such as bioconjugation, sensing, and surface polymerization, and thus makes the approach and the Au25 nanoclusters of broad utility.

[1]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[2]  P. Théato,et al.  Versatile Synthesis of Functional Gold Nanoparticles: Grafting Polymers From and Onto , 2008 .

[3]  Thomas Bürgi,et al.  Chiral inversion of gold nanoparticles. , 2008, Journal of the American Chemical Society.

[4]  Xiaogang Peng,et al.  Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. , 2003, Journal of the American Chemical Society.

[5]  D. Feldheim,et al.  Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays , 2000 .

[6]  James E Hutchison,et al.  Rapid purification and size separation of gold nanoparticles via diafiltration. , 2006, Journal of the American Chemical Society.

[7]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[8]  R. Jin,et al.  Thermally-induced formation of atomic Au clusters and conversion into nanocubes. , 2004, Journal of the American Chemical Society.

[9]  K. Nobusada,et al.  Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Structures , 2007 .

[10]  R. Whetten,et al.  The colours of nanometric gold , 2007 .

[11]  R. Jin Super robust nanoparticles for biology and biomedicine. , 2008, Angewandte Chemie.

[12]  R. Kornberg,et al.  Thiolate ligands for synthesis of water-soluble gold clusters. , 2005, Journal of the American Chemical Society.

[13]  Heinrich M. Jaeger,et al.  Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates , 2001 .

[14]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[15]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[16]  R. Murray,et al.  Poly-hetero-ω-functionalized Alkanethiolate-stabilized gold cluster compounds , 1997 .

[17]  R. Crooks,et al.  Monolayers of thiol-terminated dendrimers on the surface of planar and colloidal gold , 1999 .

[18]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[19]  Wilson,et al.  Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. , 1990, Physical review letters.

[20]  Dongil Lee,et al.  Facile preparative route to alkanethiolate-coated Au38 nanoparticles: postsynthesis core size evolution. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[21]  R. Jin,et al.  One-pot synthesis of robust core/shell gold nanoparticles. , 2008, Journal of the American Chemical Society.

[22]  D. Schiffrin,et al.  Purification of dodecanethiol derivatised gold nanoparticles. , 2003, Chemical communications.

[23]  M. Maye,et al.  Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles: A Strategy for Size and Shape Manipulations , 2000 .

[24]  Shaowei Chen Self-Assembling of Monolayer-Protected Gold Nanoparticles , 2000 .

[25]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[26]  M. Fox,et al.  Energy transfer from a surface-bound arene to the gold core in ω-fluorenyl-alkane-1-thiolate monolayer-protected gold clusters , 2003 .

[27]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[28]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[29]  A. Gerdon,et al.  Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. , 2007, Journal of the American Chemical Society.

[30]  Cagliyan Kurdak,et al.  Single-Phase Synthesis of Functionalized Gold Nanoparticles , 2004 .

[31]  G. Jensen,et al.  Rigid, specific, and discrete gold nanoparticle/antibody conjugates. , 2006, Journal of the American Chemical Society.

[32]  Peter Liljeroth,et al.  Synthesis and stability of monolayer-protected Au38 clusters. , 2008, Journal of the American Chemical Society.

[33]  J. Pomposo,et al.  Gold–glutathione supramolecular hydrogels , 2007 .

[34]  T. Pradeep,et al.  Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence , 2008 .

[35]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[36]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[37]  J. Ying,et al.  Functionalization of Gold Nanospheres and Nanorods by Chitosan Oligosaccharide Derivatives , 2008 .

[38]  A. H. Holm,et al.  Molecular electron-transfer properties of Au38 clusters. , 2007, Journal of the American Chemical Society.

[39]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[40]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[41]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[42]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[43]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[44]  X. Zeng,et al.  Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. , 2008, Journal of the American Chemical Society.

[45]  Ki‐Hyun Kim,et al.  Preparation and Photoluminescent Properties of Gold(I)−Alkanethiolate Complexes Having Highly Ordered Supramolecular Structures , 2007 .

[46]  Ryan J. White,et al.  Hexanethiolate monolayer protected 38 gold atom cluster. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[48]  Sang-Ho Cha,et al.  Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. , 2005, Journal of the American Chemical Society.

[49]  D. Zanchet,et al.  Structure Population in Thiol-Passivated Gold Nanoparticles , 2000 .

[50]  Chanel K. Yee,et al.  Novel One-Phase Synthesis of Thiol-Functionalized Gold, Palladium, and Iridium Nanoparticles Using Superhydride , 1999 .

[51]  S. Hasegawa,et al.  Heat‐Induced Size Evolution of Gold Nanoparticles in the Solid State , 2001 .

[52]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[53]  Nanfeng Zheng,et al.  A general synthetic strategy for oxide-supported metal nanoparticle catalysts. , 2006, Journal of the American Chemical Society.

[54]  D. Grainger,et al.  Nanobiomaterials and Nanoanalysis: Opportunities for Improving the Science to Benefit Biomedical Technologies , 2008 .

[55]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[56]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[57]  R. Lennox,et al.  Preparation of Thiol-Capped Gold Nanoparticles by Chemical Reduction of Soluble Au(I)−Thiolates , 2005 .

[58]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[59]  Hiroshi Yao,et al.  Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization , 2004 .