Order Types of Convex Bodies

We prove a Hadwiger transversal-type result, characterizing convex position on a family of non-crossing convex bodies in the plane. This theorem suggests a definition for the order type of a family of convex bodies, generalizing the usual definition of order type for point sets. This order type turns out to be an oriented matroid. We also give new upper bounds on the Erdős–Szekeres theorem in the context of convex bodies.

[1]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[2]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[3]  Bernd Sturmfels,et al.  Oriented Matroids: Notation , 1999 .

[4]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[5]  János Pach,et al.  Families of convex sets not representable by points , 2008 .

[6]  Esther E. Klein,et al.  On some extremum problems in elementary geometry , 2006 .

[7]  János Pach,et al.  A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..

[8]  Tibor Bisztriczky,et al.  Convexly independent sets , 1990, Comb..

[9]  József Solymosi,et al.  Erdos-Szekeres theorem with forbidden order types , 2006, J. Comb. Theory, Ser. A.

[10]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[11]  H. Hadwiger Ueber Eibereiche mit gemeinsamer Treffgeraden , 1957 .

[12]  Jürgen Eckhoff,et al.  A gallai-type transversal problem in the plane , 1993, Discret. Comput. Geom..

[13]  Tibor Bisztriczky,et al.  The Erd√∂s-Szekeres Problem for Planar Points in Arbitrary Position , 2003 .

[14]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[15]  Andrew Suk On Order Types of Systems of Segments in the Plane , 2010, Order.

[16]  B. Sturmfels Oriented Matroids , 1993 .

[17]  Jj Anos Pach Erd} Os-szekeres-type Theorems for Segments and Non-crossing Convex Sets , 1998 .

[18]  Tibor Bisztriczky,et al.  Nine convex sets determine a pentagon with convex sets as vertices , 1989 .

[19]  L. Lovász Combinatorial problems and exercises , 1979 .

[20]  Géza Tóth,et al.  Note on the Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[21]  Jaroslav Nesetril,et al.  Ramsey Theory in the Work of Paul Erdős , 2013, The Mathematics of Paul Erdős II.

[22]  T. Bisztriczky,et al.  A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .

[23]  T. Wassmer 6 , 1900, EXILE.

[24]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[25]  János Pach,et al.  Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .