Monitoring Drought over the Conterminous United States Using MODIS and NCEP Reanalysis-2 Data

Abstract Monitoring land surface drought using remote sensing data is a challenge, although a few methods are available. Evapotranspiration (ET) is a valuable indicator linked to land drought status and plays an important role in surface drought detection at continental and global scales. In this study, the evaporative drought index (EDI), based on the estimated actual ET and potential ET (PET), is described to characterize the surface drought conditions. Daily actual ET at 4-km resolution for April–September 2003–05 across the continental United States is estimated using a simple improved ET model with input solar radiation acquired by Moderate-Resolution Imaging Spectroradiometer (MODIS) at a spatial resolution of 4 km and input meteorological parameters from NCEP Reanalysis-2 data at a spatial resolution of 32 km. The PET is also calculated using some of these data. The estimated actual ET has been rigorously validated with ground-measured ET at six Enhanced Facility sites in the Southern Great Plains ...

[1]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[2]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[3]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[4]  S. Liang,et al.  An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[5]  M P Van Rooy,et al.  A RAINFALL ANOMALLY INDEX INDEPENDENT OF TIME AND SPACE, NOTOS , 1965 .

[6]  J. Norman,et al.  A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces , 2000 .

[7]  Qiming Qin,et al.  Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China , 2008 .

[8]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[9]  Shunlin Liang,et al.  Estimation of Daytime Net Radiation from Shortwave Radiation Measurements and Meteorological Observations , 2009 .

[10]  Felix Kogan,et al.  AVHRR-based vegetation and temperature condition indices for drought detection in Argentina , 1998 .

[11]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[12]  Juan Vicente Giráldez,et al.  Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain , 2004 .

[13]  S. Idso,et al.  Measuring yield-reducing plant water potential depressions in wheat by infrared thermometry , 1981, Irrigation Science.

[14]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[15]  Franz H. Berger,et al.  The influence of land surface parameters on energy flux densities derived from remote sensing data , 2005 .

[16]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[17]  Shunlin Liang,et al.  Estimation of daily-integrated PAR from sparse satellite observations: comparison of temporal scaling methods , 2010 .

[18]  S. Goward,et al.  Estimation of air temperature from remotely sensed surface observations , 1997 .

[19]  Liu Shaomin,et al.  Study on NDVI- T s space by combining LAI and evapotranspiration , 2006 .

[20]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[21]  A. R. Khoob,et al.  Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment , 2008, Irrigation science.

[22]  George H. Hargreaves,et al.  Accuracy of Estimated Reference Crop Evapotranspiration , 1989 .

[23]  R. Allen,et al.  History and Evaluation of Hargreaves Evapotranspiration Equation , 2003 .

[24]  F. Kogan,et al.  Global Drought Watch from Space , 1997 .

[25]  D. Jupp,et al.  The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review , 1998 .

[26]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology , 2007 .

[27]  Qiming Qin,et al.  Exploration of the spectral space based on vegetation index and albedo for surface drought estimation , 2007 .

[28]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[29]  F. Kogan Remote sensing of weather impacts on vegetation in non-homogeneous areas , 1990 .

[30]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[31]  T. Tadesse,et al.  The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation , 2008 .

[32]  Mark Heuer,et al.  Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site , 2006 .

[33]  M. S. Moran,et al.  Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index , 1994 .

[34]  Eric F. Lambin,et al.  The surface temperature-vegetation index space for land cover and land-cover change analysis , 1996 .

[35]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[36]  George H. Hargreaves,et al.  Defining and Using Reference Evapotranspiration , 1994 .

[37]  A. Huete,et al.  MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data , 1999 .

[38]  G. Katul,et al.  Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy , 2006 .

[39]  T. Andrew Black,et al.  Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought , 2006 .

[40]  George H. Hargreaves,et al.  Irrigation Water Requirements for Senegal River Basin , 1985 .

[41]  I. Sandholt,et al.  A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status , 2002 .

[42]  J. Dracup,et al.  The Quantification of Drought: An Evaluation of Drought Indices , 2002 .

[43]  T. Carlson,et al.  A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover , 1994 .

[44]  Assefa M. Melesse,et al.  A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields , 2007, Sensors (Basel, Switzerland).

[45]  Zhanqing Li,et al.  A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature , 2007 .

[46]  T. McKee,et al.  Drought monitoring with multiple time scales , 1995 .

[47]  S. Running,et al.  Developing Satellite-derived Estimates of Surface Moisture Status , 1993 .

[48]  F. Kogan Application of vegetation index and brightness temperature for drought detection , 1995 .

[49]  Zhiming Zhan,et al.  Designing of the perpendicular drought index , 2007 .

[50]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .