Assessing group-based cutoffs and the Ewald method for electrostatic interactions in clusters and in saturated, superheated, and supersaturated vapor phases of dipolar molecules

[1]  Tetsu Narumi,et al.  Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water. , 2010, The Journal of chemical physics.

[2]  Katie A. Maerzke,et al.  Effects of an applied electric field on the vapor-liquid equilibria of water, methanol, and dimethyl ether. , 2010, The journal of physical chemistry. B.

[3]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges. , 2009, Journal of chemical theory and computation.

[4]  B. C. Garrett,et al.  Thermodynamics and Kinetics of Nanoclusters Controlling Gas-to-Particle Nucleation , 2009 .

[5]  Xavier Daura,et al.  Molecular dynamics simulations of a reversibly folding beta-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions. , 2009, The journal of physical chemistry. B.

[6]  J. VandeVondele,et al.  Importance of the number of acid molecules and the strength of the base for double-ion formation in (H2SO4)m x base x (H2O)6 clusters. , 2008, Journal of the American Chemical Society.

[7]  E. Díaz‐Herrera,et al.  Computer simulations of strongly interacting dipolar systems: performance of a truncated Ewald sum , 2006 .

[8]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[9]  Bin Chen,et al.  Microscopic structure and solvation in dry and wet octanol. , 2006, The journal of physical chemistry. B.

[10]  Fawzi Mohamed,et al.  Simulating fluid-phase equilibria of water from first principles. , 2006, The journal of physical chemistry. A.

[11]  Bin Chen,et al.  Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models. , 2005, The journal of physical chemistry. A.

[12]  Andrés Aguado,et al.  Ewald summation of electrostatic multipole interactions up to the quadrupolar level , 2003 .

[13]  A. Galindo,et al.  Improved models for the phase behaviour of hydrogen fluoride: chain and ring aggregates in the SAFT approach and the AEOS model , 2002 .

[14]  M. Klein,et al.  Simulating vapor–liquid nucleation of n-alkanes , 2002 .

[15]  I. R. Mcdonald,et al.  NpT-ensemble Monte Carlo calculations for binary liquid mixtures , 2002 .

[16]  J. Ilja Siepmann,et al.  Improving the Efficiency of the Aggregation−Volume−Bias Monte Carlo Algorithm , 2001 .

[17]  J. Ilja Siepmann,et al.  Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols , 2001 .

[18]  J. I. Siepmann,et al.  A Novel Monte Carlo Algorithm for Simulating Strongly Associating Fluids: Applications to Water, Hydrogen Fluoride, and Acetic Acid , 2000 .

[19]  D. Frenkel,et al.  Chain formation in homogeneous gas–liquid nucleation of polar fluids , 1999 .

[20]  D. Visco,et al.  VAPOR-LIQUID EQUILIBRIA AND HEAT EFFECTS OF HYDROGEN FLUORIDE FROM MOLECULAR SIMULATION , 1998 .

[21]  Rajamani Krishna,et al.  Improving the efficiency of the configurational-bias Monte Carlo algorithm , 1998 .

[22]  H. Reiss,et al.  Toward a molecular theory of vapor-phase nucleation. V. Self-consistency in the decoupled dimer limit , 1997 .

[23]  B. Brooks,et al.  Effect of Electrostatic Force Truncation on Interfacial and Transport Properties of Water , 1996 .

[24]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[25]  Esselink,et al.  Parallel Monte Carlo simulations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  J. Pablo,et al.  Bond‐bias simulation of phase equilibria for strongly associating fluids , 1994 .

[27]  T. Darden,et al.  The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods , 1993 .

[28]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[29]  J. Pablo Simulation of phase equilibria for chain molecules , 1992 .

[30]  Berend Smit,et al.  Direct simulation of phase equilibria of chain molecules. , 1992 .

[31]  J. Prausnitz,et al.  Molecular simulation of water along the liquid–vapor coexistence curve from 25 °C to the critical point , 1990 .

[32]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[33]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[34]  L. A. Curtiss,et al.  Thermodynamic properties of gas-phase hydrogen-bonded complexes , 1988 .

[35]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[36]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[37]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[38]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[39]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[40]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[41]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[42]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[43]  J. Simons,et al.  THE DENSITY AND MOLECULAR COMPLEXITY OF GASEOUS HYDROGEN FLUORIDE , 1924 .

[44]  M. McGrath,et al.  First principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride. , 2010, Physical chemistry chemical physics : PCCP.

[45]  Donald G Truhlar,et al.  Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers. , 2008, Journal of chemical theory and computation.

[46]  J. Kolafa,et al.  Handling Electrostatic Interactions in Molecular Simulations: A Systematic Study , 2008 .

[47]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. , 2007, Journal of chemical theory and computation.

[48]  X. Zeng,et al.  A small-system ensemble Monte Carlo simulation of supersaturated vapor: Evaluation of barrier to nucleation , 2000 .

[49]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[50]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[51]  W. L. Jorgensen,et al.  An improved intermolecular potential function for simulations of liquid hydrogen fluoride , 1984 .