Design of an electron microscope phase plate using a focused continuous-wave laser

We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[3]  F. Zernike How I discovered phase contrast. , 1955, Science.

[4]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[5]  J. Dawson,et al.  ELECTRON INTERFERENCE EFFECTS INDUCED BY LASER LIGHT. , 1967 .

[6]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[7]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[8]  Y. E. Matizen,et al.  CONTROL OF LASER RADIATION PARAMETERS: Formation of a laser beam with a uniform intensity distribution utilizing an intracavity inhomogeneous beam splitter , 1989 .

[9]  C. Moore Confinement of Electrons to the Centre of a Laser Focus Via the Ponderomotive Potential , 1992 .

[10]  A. Meixner,et al.  A high numerical aperture parabolic mirror as imaging device for confocal microscopy. , 2001, Optics express.

[11]  K. Nagayama,et al.  Transmission electron microscopy with Zernike phase plate. , 2001, Ultramicroscopy.

[12]  Jun Ye,et al.  Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity , 2001, quant-ph/0101103.

[13]  J. Lekner Polarization of tightly focused laser beams , 2003, physics/0305065.

[14]  J. Spence High-Resolution Electron Microscopy , 2003 .

[15]  M. Lentzen The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. , 2004, Ultramicroscopy.

[16]  K. Nagayama,et al.  Transfer doublet and an elaborated phase plate holder for 120 kV electron-phase microscope. , 2005, Journal of electron microscopy.

[17]  R. Schröder,et al.  Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope , 2006 .

[18]  A. Friberg,et al.  Local polarization of tightly focused unpolarized light , 2007 .

[19]  Robert Glaeser,et al.  Electron Crystallography of Biological Macromolecules , 2007 .

[20]  K. Downing,et al.  Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. , 2006, Ultramicroscopy.

[21]  Keqian Zhang,et al.  Electromagnetic Theory for Microwaves and Optoelectronics , 2007 .

[22]  B. Barwick,et al.  Aharonov–Bohm phase shifts induced by laser pulses , 2008 .

[23]  Radostin Danev,et al.  Phase contrast electron microscopy: development of thin-film phase plates and biological applications , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  A. Meixner,et al.  Tighter focusing with a parabolic mirror. , 2008, Optics letters.

[25]  K. Nagayama,et al.  Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures , 2009, Biophysical Reviews.

[26]  J. Glückstad,et al.  Gaussian to uniform intensity shaper based on generalized phase contrast. , 2008, Optics express.

[27]  Robert M Glaeser,et al.  Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. , 2009, Ultramicroscopy.

[28]  T. Baker Electron Crystallography of Biological Macromolecules , R. M. Glaeser, K. Downing, D. DeRosier, W. Chiu, J. Frank. Oxford University Press; 2007, 476 pages. ISBN 0195088719 (Hardcover) , 2009, Microscopy and Microanalysis.

[29]  B. Roberts Lepton Dipole Moments , 2003, hep-ex/0309010.