On the parameterized complexity of some optimization problems related to multiple-interval graphs

We show that for any constant t ≥ 2, k-INDEPENDENT SET and k-DOMINATING SET in t-track interval graphs are W[1]-hard. This settles an open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We also give an FPT algorithm for k-CLIQUE in t-interval graphs, parameterized by both k and t, with running time max{tO(k), 2O(k log k)} ċ poly(n), where n is the number of vertices in the graph. This slightly improves the previous FPT algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the W[1]-hardness of k-INDEPENDENT SET in t-track interval graphs to obtain the first parameterized intractability result for a recent bioinformatics problem called MAXIMAL STRIP RECOVERY (MSR). We show that MSR-d is W[1]-hard for any constant d ≥ 4 when the parameter is either the total length of the strips, or the total number of adjacencies in the strips, or the number of strips in the optimal solution.

[1]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[2]  R. Ravi,et al.  Nonoverlapping Local Alignments (weighted Independent Sets of Axis-parallel Rectangles) , 1996, Discret. Appl. Math..

[3]  Gad M. Landau,et al.  Approximating the 2-interval pattern problem , 2008, Theor. Comput. Sci..

[4]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[5]  Celina M. H. de Figueiredo,et al.  Tree loop graphs , 2007, Discret. Appl. Math..

[6]  Bin Fu,et al.  On recovering syntenic blocks from comparative maps , 2008, J. Comb. Optim..

[7]  Minghui Jiang Approximation Algorithms for Predicting RNA Secondary Structures with Arbitrary Pseudoknots , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  Moshe Lewenstein,et al.  Optimization problems in multiple-interval graphs , 2007, SODA '07.

[9]  Guillaume Fertin,et al.  Maximal strip recovery problem with gaps: Hardness and approximation algorithms , 2009, J. Discrete Algorithms.

[10]  Philippe Gambette,et al.  On Restrictions of Balanced 2-Interval Graphs , 2007, WG.

[11]  Minghui Jiang,et al.  Inapproximability of Maximal Strip Recovery: II , 2009, FAW.

[12]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[13]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[14]  Stéphane Vialette,et al.  On the computational complexity of 2-interval pattern matching problems , 2004, Theor. Comput. Sci..

[15]  D. Sankoff,et al.  Removing Noise and Ambiguities from Comparative Maps in Rearrangement Analysis , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Jerrold R. Griggs Extremal values of the interval number of a graph, II , 1979, Discret. Math..

[17]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[18]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[19]  Lusheng Wang,et al.  On the Tractability of Maximal Strip Recovery , 2009, TAMC.

[20]  João Meidanis,et al.  Determining DNA Sequence Similarity Using Maximum Independent Set Algorithms for Interval Graphs , 1992, SWAT.