Materials characterization by instrumented indentation using two different approaches

[1]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[2]  F. C. Lea Hardness of metals , 1936 .

[3]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[4]  J. Georges,et al.  Vickers Indentation Curves of Elastoplastic Materials , 1985 .

[5]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[6]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[7]  Ch. Tsakmakis,et al.  Experimental and theoretical investigation of the effect of kinematic hardening on spherical indentation , 1998 .

[8]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .

[9]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part i:the case of pure kinematic hardening in plasticity laws , 1999 .

[10]  Sanjay Sampath,et al.  Determination of properties of graded materials by inverse analysis and instrumented indentation , 2000 .

[11]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[12]  P. Wolff,et al.  Small correction required when applying the Hertzian contact model to instrumented indentation data , 2001 .

[13]  Zenon Mróz,et al.  Identification of plastic hardening parameters of metals from spherical indentation tests , 2001 .

[14]  Ali Nayebi,et al.  New procedure to determine steel mechanical parameters from the spherical indentation technique , 2002 .

[15]  S. Suresh,et al.  Depth-sensing instrumented indentation with dual sharp indenters , 2003 .

[16]  Johann Michler,et al.  Determination of plastic properties of metals by instrumented indentation using different sharp indenters , 2003 .

[17]  Zenon Mróz,et al.  Identification of material parameters by means of compliance moduli in spherical indentation test , 2004 .

[18]  Giulio Maier,et al.  Material model calibration by indentation, imprint mapping and inverse analysis , 2004 .

[19]  Jian Lu,et al.  A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve , 2004 .

[20]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[21]  G. Pharr,et al.  A numerical approach to spherical indentation techniques for material property evaluation , 2005 .

[22]  V. Fontanari,et al.  Evaluation of the stress-strain curve of metallic materials by spherical indentation , 2006 .

[23]  Zenon Mróz,et al.  Identification of yield stress and plastic hardening parameters from a spherical indentation test , 2007 .

[24]  P. Pilvin,et al.  Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol , 2008 .

[25]  E. Tyulyukovskiy,et al.  An indentation system for determination of viscoplastic stress–strain behavior of small metal volumes before and after irradiation , 2008 .

[26]  G. Mauvoisin,et al.  An experimental method to determine the contact radius changes during a spherical instrumented indentation , 2008 .

[27]  P. Pilvin,et al.  Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes , 2009 .