SCMA Codebook Design

Multicarrier CDMA is a multiple access scheme in which modulated QAM symbols are spread over OFDMA tones by using a generally complex spreading sequence. Effectively, a QAM symbol is repeated over multiple tones. Low density signature (LDS) is a version of CDMA with low density spreading sequences allowing us to take advantage of a near optimal message passing algorithm (MPA) receiver with practically feasible complexity. Sparse code multiple access (SCMA) is a multi-dimensional codebook-based non-orthogonal spreading technique. In SCMA, the procedure of bit to QAM symbol mapping and spreading are combined together and incoming bits are directly mapped to multi-dimensional codewords of SCMA codebook sets. Each layer has its dedicated codebook. Shaping gain of a multi-dimensional constellation is one of the main sources of the performance improvement in comparison to the simple repetition of QAM symbols in LDS. Meanwhile, like LDS, SCMA enjoys the low complexity reception techniques due to the sparsity of SCMA codewords. In this paper a systematic approach is proposed to design SCMA codebooks mainly based on the design principles of lattice constellations. Simulation results are presented to show the performance gain of SCMA compared to LDS and OFDMA.

[1]  Hosein Nikopour,et al.  Sparse code multiple access , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[2]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[3]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[4]  Frédérique E. Oggier,et al.  Algebraic Number Theory and Code Design for Rayleigh Fading Channels , 2004, Found. Trends Commun. Inf. Theory.

[5]  Emanuele Viterbo,et al.  Good lattice constellations for both Rayleigh fading and Gaussian channels , 1996, IEEE Trans. Inf. Theory.

[6]  Jaap van de Beek,et al.  Multiple Access with Low-Density Signatures , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[7]  Erik Dahlman,et al.  4G: LTE/LTE-Advanced for Mobile Broadband , 2011 .

[8]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[9]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[10]  Reza Hoshyar,et al.  LDS-OFDM an Efficient Multiple Access Technique , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[11]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.