Multi-objective design of a magnetic fluid hyperthermia device

The paper presents the design of a new device to heat a magnetic nanofluid in-vivo. The optimal design of the device has been carried by coupling Finite Elements (FE) solutions and various multi-objective optimization algorithms based on Non-dominated Sorting Genetic Algorithms (NSGA). The theoretical heating rate of the nanofluid, as resulting from the analytical solution that describes the heating rate in adiabatic conditions, is compared to the one calculated in a FE model that takes into account more real-life thermal conditions.

[1]  F Dughiero,et al.  Coupled Field Synthesis in Magnetic Fluid Hyperthermia , 2010, IEEE Transactions on Magnetics.

[2]  P Wust,et al.  Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[3]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[4]  Fabrizio Dughiero,et al.  Optimization of the Loney's solenoid through quasi-analytical strategies: a benchmark problem reconsidered , 1997 .

[5]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[6]  Fabrizio Dughiero,et al.  A Paretian Approach to Optimal Design With Uncertainties: Application in Induction Heating , 2014, IEEE Transactions on Magnetics.

[7]  Fabrizio Dughiero,et al.  Field synthesis for the optimal treatment planning in Magnetic Fluid Hyperthermia , 2012 .

[8]  P. Di Barba,et al.  Synthesizing Distributions of Magnetic Nanoparticles for Clinical Hyperthermia , 2012, IEEE Transactions on Magnetics.

[9]  Paolo Di Barba,et al.  Multi-objective design of a power inductor: a benchmark problem of inverse induction heating , 2014 .

[10]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[11]  P. Di Barba,et al.  Migration NSGA: method to improve a non-elitist searching of Pareto front, with application in magnetics , 2016 .

[12]  Paolo Di Barba,et al.  Multiobjective design optimization of an induction heating device: A benchmark problem , 2015 .

[13]  Fabrizio Dughiero,et al.  Optimal inductor design for nanofluid heating characterisation , 2015 .

[14]  P. Wust,et al.  The cellular and molecular basis of hyperthermia. , 2002, Critical reviews in oncology/hematology.

[15]  I. Andreu,et al.  Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[16]  M. Ibarra,et al.  Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[17]  Fabrizio Dughiero,et al.  Sensitivity-based optimal shape design of induction-heating devices , 2015 .

[18]  Manuel Ricardo Ibarra,et al.  Magnetic Nanoparticles for Cancer Therapy , 2008 .

[19]  H. H. Pennes Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. , 1948, Journal of applied physiology.

[20]  Fabrizio Dughiero,et al.  Magnetic Field Synthesis in the Design of Inductors for Magnetic Fluid Hyperthermia , 2010, IEEE Transactions on Magnetics.

[21]  M. Seebass,et al.  Impact of nonlinear heat transfer on temperature control in regional hyperthermia , 1999, IEEE Transactions on Biomedical Engineering.

[22]  Fabrizio Dughiero,et al.  Synthesizing a nanoparticle distribution in magnetic fluid hyperthermia , 2011 .

[23]  Paolo Vavassori,et al.  Mössbauer investigation of sputtered FexAg100−x films , 2004 .

[24]  Sebastiano Fabio Schifano,et al.  Morphology and magnetic properties of size-selected Ni nanoparticle films , 2010 .

[25]  Cristina Marzano,et al.  Synthesis, Characterization and Application of Iron Oxide Magnetic Nanoparticles for Magneto Fluid Hyperthermia Therapy , 2015 .

[26]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[27]  Carlo A. Borghi,et al.  Loney's solenoid multi-objective optimization problem , 1999 .