Strongly Convex Functions, Moreau Envelopes, and the Generic Nature of Convex Functions with Strong Minimizers
暂无分享,去创建一个
[1] Roger J.-B. Wets,et al. ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM , 1986 .
[2] Roberto Lucchetti,et al. The EPI-Distance Topology: Continuity and Stability Results with Applications to Convex Optimization Problems , 1992, Math. Oper. Res..
[3] T. Zolezzi,et al. Well-Posed Optimization Problems , 1993 .
[4] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[5] S. Reich,et al. Genericity in Nonlinear Analysis , 2013 .
[6] H. Attouch. Variational convergence for functions and operators , 1984 .
[7] J. Borwein,et al. Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .
[8] Roberto Lucchetti,et al. The topology of theρ-hausdorff distance , 1991 .
[9] Heinz H. Bauschke,et al. The Proximal Average: Basic Theory , 2008, SIAM J. Optim..
[10] Petar S. Kenderov,et al. Generic well-posedness of optimization problems in topological spaces , 1989 .
[11] A. Goodman,et al. On uniformly convex functions , 1991 .
[12] Robert Deville,et al. Porosity of ill-posed problems , 1999 .
[13] R. DeVille,et al. A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions , 1993 .
[14] Karolin Papst,et al. Techniques Of Variational Analysis , 2016 .
[15] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[16] Roberto Lucchetti,et al. Convexity and well-posed problems , 2006 .
[17] Gerald Beer,et al. Topologies on Closed and Closed Convex Sets , 1993 .
[18] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[19] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[20] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[21] Mark W. Schmidt,et al. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method , 2012, ArXiv.
[22] The Banach-Mazur game and generic existence of solutions to optimization problems , 1993 .
[23] C. Planiden,et al. Most Convex Functions Have Unique Minimizers , 2014, 1410.1078.
[24] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[25] Roberto Lucchetti,et al. Convex optimization and the epi-distance topology , 1991 .
[26] R. T. Rockafellar,et al. The Generic Nature of Optimality Conditions in Nonlinear Programming , 1979, Math. Oper. Res..
[27] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[28] J. Baillon,et al. Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones , 1977 .
[29] J. Revalski,et al. Well-posed constrained optimization problems in metric spaces , 1993 .
[30] Xianfu Wang. Most Maximally Monotone Operators Have a Unique Zero and a Super-regular Resolvent , 2013, 1301.6443.
[31] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[32] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .