Strongly Convex Functions, Moreau Envelopes, and the Generic Nature of Convex Functions with Strong Minimizers

In this work, using Moreau envelopes, we define a complete metric for the set of proper lower semicontinuous convex functions in a finite-dimensional space. Under this metric, the convergence of each sequence of convex functions is epi-convergence. We show that the set of strongly convex functions is dense but it is only of the first category. On the other hand, it is shown that the set of convex functions with strong minima is of the second category.

[1]  Roger J.-B. Wets,et al.  ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM , 1986 .

[2]  Roberto Lucchetti,et al.  The EPI-Distance Topology: Continuity and Stability Results with Applications to Convex Optimization Problems , 1992, Math. Oper. Res..

[3]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[4]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[5]  S. Reich,et al.  Genericity in Nonlinear Analysis , 2013 .

[6]  H. Attouch Variational convergence for functions and operators , 1984 .

[7]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[8]  Roberto Lucchetti,et al.  The topology of theρ-hausdorff distance , 1991 .

[9]  Heinz H. Bauschke,et al.  The Proximal Average: Basic Theory , 2008, SIAM J. Optim..

[10]  Petar S. Kenderov,et al.  Generic well-posedness of optimization problems in topological spaces , 1989 .

[11]  A. Goodman,et al.  On uniformly convex functions , 1991 .

[12]  Robert Deville,et al.  Porosity of ill-posed problems , 1999 .

[13]  R. DeVille,et al.  A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions , 1993 .

[14]  Karolin Papst,et al.  Techniques Of Variational Analysis , 2016 .

[15]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[16]  Roberto Lucchetti,et al.  Convexity and well-posed problems , 2006 .

[17]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[18]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[19]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[20]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[21]  Mark W. Schmidt,et al.  A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method , 2012, ArXiv.

[22]  The Banach-Mazur game and generic existence of solutions to optimization problems , 1993 .

[23]  C. Planiden,et al.  Most Convex Functions Have Unique Minimizers , 2014, 1410.1078.

[24]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[25]  Roberto Lucchetti,et al.  Convex optimization and the epi-distance topology , 1991 .

[26]  R. T. Rockafellar,et al.  The Generic Nature of Optimality Conditions in Nonlinear Programming , 1979, Math. Oper. Res..

[27]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[28]  J. Baillon,et al.  Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones , 1977 .

[29]  J. Revalski,et al.  Well-posed constrained optimization problems in metric spaces , 1993 .

[30]  Xianfu Wang Most Maximally Monotone Operators Have a Unique Zero and a Super-regular Resolvent , 2013, 1301.6443.

[31]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[32]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .