Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber

We have developed a convolutional neural network that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a nu(mu) charged-current neutral pion data samples.

MicroBooNE collaboration C. Adams | M. Alrashed | R. An | J. Anthony | J. Asaadi | A. Ashkenazi | M. Auger | S. Balasubramanian | B. Baller | C. Barnes | G. Barr | M. Bass | F. Bay | A. Bhat | K. Bhattacharya | M. Bishai | A. Blake | T. Bolton | L. Camilleri | D. Caratelli | I. Caro Terrazas | R. Carr | R. Castillo Fernandez | F. Cavanna | G. Cerati | Y. Chen | E. Church | D. Cianci | E. Cohen | G. H. Collin | J. M. Conrad | M. Convery | L. Cooper-Troendle | J. I. Crespo-Anadon | M. Del Tutto | D. Devitt | A. Diaz | K. Duffy | S. Dytman | B. Eberly | A. Ereditato | L. Escudero Sanchez | J. Esquivel | J. J. Evans | A. A. Fadeeva | R. S. Fitzpatrick | B. T. Fleming | D. Franco | A. P. Furmanski | D. Garcia-Gamez | G. T. Garvey | V. Genty | D. Goeldi | S. Gollapinni | O. Goodwin | E. Gramellini | H. Greenlee | R. Grosso | R. Guenette | P. Guzowski | A. Hackenburg | P. Hamilton | O. Hen | J. Hewes | C. Hill | G. A. Horton-Smith | A. Hourlier | E.-C. Huang | C. James | J. Jan de Vries | L. Jiang | R. A. Johnson | J. Joshi | H. Jostlein | Y.-J. Jwa | G. Karagiorgi | W. Ketchum | B. Kirby | M. Kirby | T. Kobilarcik | I. Kreslo | Y. Li | A. Lister | B. R. Littlejohn | S. Lockwitz | D. Lorca | W. C. Louis | M. Luethi | B. Lundberg | X. Luo | A. Marchionni | S. Marcocci | C. Mariani | J. Marshall | J. Martin-Albo | D. A. Martinez Caicedo | A. Mastbaum | V. Meddage | T. Mettler | G. B. Mills | K. Mistry | A. Mogan | J. Moon | M. Mooney | C. D. Moore | J. Mousseau | M. Murphy | R. Murrells | D. Naples | P. Nienaber | J. Nowak | O. Palamara | V. Pandey | V. Paolone | A. Papadopoulou | V. Papavassiliou | S. F. Pate | Z. Pavlovic | E. Piasetzky | D. Porzio | G. Pulliam | X. Qian | J. L. Raaf | A. Rafique | L. Rochester | M. Ross-Lonergan | C. Rudolf von Rohr | B. Russell | D. W. Schmitz | A. Schukraft | W. Seligman | M. H. Shaevitz | R. Sharankova | J. Sinclair | A. Smith | E. L. Snider | M. Soderberg | S. Soldner-Rembold | S. R. Soleti | P. Spentzouris | J. Spitz | J. St. John | T. Strauss | K. Sutton | S. Sword-Fehlberg | A. M. Szelc | N. Tagg | W. Tang | K. Terao | M. Thomson | R. T. Thornton | M. Toups | Y.-T. Tsai | S. Tufanli | T. Usher | W. Van De Pontseele | R. G. Van de Water | B. Viren | M. Weber | H. Wei | D. A. Wickremasinghe | K. Wierman | Z. Williams | S. Wolbers | T. Wongjirad | K. Woodruff | T. Yang | G. Yarbrough | L. E. Yates | G. P. Zeller | J. Zennamo | C. Zhang | J. I. Crespo-Anadón | M. Convery | G. Collin | M. Murphy | A. Ereditato | M. Thomson | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | W. Ketchum | M. Kirby | S. Lockwitz | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | D. Franco | B. Viren | M. Tutto | E. Church | R. Guenette | Janhavi Joshi | V. Papavassiliou | A. Marchionni | G. Mills | G. Barr | G. Zeller | K. Mistry | M. Weber | H. Wei | O. Palamara | V. Paolone | R. Johnson | P. Nienaber | D. Naples | W. Seligman | L. Camilleri | R. Carr | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | F. Bay | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | B. Littlejohn | X. Qian | B. Baller | M. Bass | F. Cavanna | B. Fleming | G. Garvey | J. Hewes | C. James | H. Jostlein | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | A. Szelc | S. Soldner-Rembold | A. Blake | J. Evans | S. Tufanli | K. Duffy | A. Furmanski | D. Goeldi | P. Hamilton | B. Lundberg | A. Schukraft | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | E. Huang | D. M. Caicedo | W. Tang | M. Luethi | B. Eberly | J. Mousseau | A. Papadopoulou | D. Caratelli | I. C. Terrazas | L. E. Sanchez | R. Fitzpatrick | D. Garcia-Gamez | O. Goodwin | A. Hackenburg | L. Jiang | Y. Jwa | A. Lister | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Moon | A. Rafique | B. Russell | J. Sinclair | A. Smith | Z. Williams | M. Auger | M. Alrashed | J. Anthony | A. Ashkenazi | A. Bhat | D. Cianci | E. Cohen | L. Cooper-Troendle | D. Devitt | O. Hen | T. Kobilarcik | S. Marcocci | V. Meddage | T. Mettler | A. Mogan | S. Pate | E. Piasetzky | D. Porzio | M. Ross-Lonergan | E. Snider | S. Soleti | K. Sutton | S. Sword-Fehlberg | R. Thornton | G. Yarbrough | L. Yates | R. Grosso | R. C. Fernández | J. Esquivel | A. Fadeeva | V. Genty | C. Hill | R. Murrells | G. Pulliam | W. V. D. Pontseele | R. G. Water | K. Woodruff | A. Diaz | V. Pandey | K. Wierman | K. Bhattacharya | Rui An | J. J. D. Vries | J. Conrad | C. R. V. Rohr | J. John | Y. Li

[1]  Prabhat,et al.  Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[2]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[4]  Steven R. Young,et al.  Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment , 2018, Journal of Instrumentation.

[5]  L. M. Moutinho,et al.  Background rejection in NEXT using deep neural networks , 2016, 1609.06202.

[6]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[7]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects , 2015 .

[8]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[9]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[10]  B C Brown,et al.  Unexplained excess of electronlike events from a 1-GeV neutrino beam. , 2008, Physical review letters.

[11]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[12]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[13]  Jaime S. Cardoso,et al.  Deep Learning and Data Labeling for Medical Applications , 2016, Lecture Notes in Computer Science.

[14]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[15]  C. D. Moore,et al.  Neutrino flux prediction at MiniBooNE , 2008, 0806.1449.

[16]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[17]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation , 2018, Journal of Instrumentation.

[18]  D. A. Wickremasinghe,et al.  Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC , 2017, 1705.07341.

[19]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[20]  S. Balasubramanian,et al.  Prepared for submission to JINST Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation , 2018 .

[21]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[22]  D. A. Wickremasinghe,et al.  Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber , 2016, 1611.05531.

[23]  C. D. Moore,et al.  Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC , 2017, 1704.02927.

[24]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[25]  Kazuhiro Terao,et al.  Machine learning at the energy and intensity frontiers of particle physics , 2018, Nature.