Exact penalty functions for generalized Nash problems

We propose the use exact penalty functions for the solution of generalized Nash equilibrium problems (GNEPs). We show that by this approach it is possible to reduce the solution of a GNEP to that of a usual Nash problem. This paves the way to the development of numerical methods for the solution of GNEPs. We also introduce the notion of generalized stationary point of a GNEP and argue that convergence to generalized stationary points is an appropriate aim for solution algorithms.

[1]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[2]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[3]  Stephen M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..

[4]  Tamer Basar,et al.  Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..

[5]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[6]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[7]  Francisco Facchinei,et al.  EXACT PENALTY FUNCTIONS FOR NONDIFFERENTIABLE PROGRAMMING PROBLEMS , 1989 .

[8]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[9]  Francisco Facchinei,et al.  Exact penalization via dini and hadamard conditional derivatives , 1998 .

[10]  V. F. Demʹi︠a︡nov,et al.  Nonsmooth optimization and related topics , 1989 .

[11]  F. Facchinei,et al.  Exact barrier function methods for Lipschitz programs , 1995 .

[12]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[13]  George P. Papavassilopoulos,et al.  Iterative techniques for the Nash solution in quadratic games with unknown parameters , 1986 .

[14]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[15]  J. Krawczyk,et al.  Relaxation Algorithms in Finding Nash Equilibria , 1998 .

[16]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[17]  T. Basar,et al.  Relaxation techniques and asynchronous algorithms for on-line computation of noncooperative equilibria , 1987, 26th IEEE Conference on Decision and Control.