Multifractal properties of sample paths of ground state-transformed jump processes

Abstract We consider a class of Levy-type processes with unbounded coefficients, arising as Doob h-transforms of Feynman-Kac type representations of non-local Schrodinger operators, where the function h is chosen to be the ground state of such an operator. First we show existence of a cadlag version of the so-obtained ground state-transformed processes. Next we prove that they satisfy a related stochastic differential equation with jumps. Making use of this SDE, we then derive and prove the multifractal spectrum of local Holder exponents of sample paths of ground state-transformed processes.

[1]  T. Ichinose,et al.  Path integral representation for schrödinger operators with bernstein functions of the laplacian , 2009, 0906.0103.

[2]  D. Khoshnevisan,et al.  Packing dimension profiles and Lévy processes , 2011, 1103.2534.

[3]  Liping Xu The multifractal nature of Boltzmann processes , 2015, 1504.06725.

[4]  Fractional P(ϕ)1-processes and Gibbs measures , 2010, 1011.2713.

[5]  A. Shiryaev,et al.  Limit Theorems, Density Processes and Contiguity , 2003 .

[6]  K. Kaleta,et al.  Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of L\'{e}vy processes , 2012, 1209.4220.

[7]  S. Seuret,et al.  The singularity spectrum of Lévy processes in multifractal time , 2007 .

[8]  V. Betz,et al.  Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory , 2011 .

[9]  René L. Schilling,et al.  Growth and Hölder conditions for the sample paths of Feller processes , 1998 .

[10]  Arnaud Durand,et al.  Multifractal analysis of Lévy fields , 2012 .

[11]  Björn Böttcher,et al.  Lévy-type processes : construction, approximation and sample path properties , 2013 .

[12]  B. Simon Functional integration and quantum physics , 1979 .

[13]  J. Jacod Shiryaev : Limit theorems for stochastic processes , 1987 .

[14]  S. Jaffard,et al.  A pure jump Markov process with a random singularity spectrum , 2009, 0907.0104.

[15]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[16]  L. A. Shepp,et al.  Covering the line with random intervals , 1972 .

[17]  Bert Fristedt,et al.  Sample Functions of Stochastic Processes with Stationary, Independent Increments. , 1972 .

[18]  Yimin Xiao,et al.  Dimension Results for Sample Paths of Operator Stable Lévy Processes , 2003 .

[19]  Yimin Xiao,et al.  Random Fractals and Markov Processes , 2003 .

[20]  D. Khoshnevisan,et al.  Packing dimension of the range of a Lévy process , 2008 .

[21]  Typical long-time behavior of ground state-transformed jump processes , 2018, Communications in Contemporary Mathematics.

[22]  S. Orey,et al.  How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .

[23]  T. Ichinose,et al.  Probabilistic Representation and Fall-Off of Bound States of Relativistic Schr\ , 2011, 1109.5829.

[24]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[25]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[26]  J. Małecki,et al.  Spectral properties of the massless relativistic harmonic oscillator , 2010, 1006.3665.

[27]  R. Schilling,et al.  The Symbol Associated with the Solution of a Stochastic Differential Equation , 2009, 0912.1458.

[28]  K. Kaleta,et al.  Fall-Off of Eigenfunctions for Non-Local Schrödinger Operators with Decaying Potentials , 2015, 1503.03508.

[29]  J. Bertoin On nowhere differentiability for Lévy processes , 1994 .

[30]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[31]  Niels Jacob,et al.  PSEUDO DIFFERENTIAL OPERATORS AND MARKOV PROCESSES, VOLUME III: MARKOV PROCESSES AND APPLICATIONS , 2005 .

[32]  Fractional Derivatives and Fractional Powers as Tools in Understanding Wentzell Boundary Value Problems for Pseudo-Differential Operators Generating Markov Processes , 2005 .

[33]  Thomas G. Kurtz,et al.  Equivalence of Stochastic Equations and Martingale Problems , 2011 .

[34]  P. Balanca Fine regularity of Lévy processes and linear (multi)fractional stable motion , 2013 .

[35]  Stéphane Jaffard,et al.  Old friends revisited: the multifractal nature of some classical functions , 1997 .

[36]  Björn Böttcher,et al.  On the construction of Feller processes with unbounded coefficients , 2011 .

[37]  Lévy Processes: Capacity and Hausdorff Dimension , 2003, math/0406444.

[38]  Uniqueness of Gibbs measures relative to Brownian motion , 2003, 0707.1462.

[39]  Xiaochuan Yang Hausdorff Dimension of the Range and the Graph of Stable-Like Processes , 2015, 1509.08759.

[40]  S. Jaffard On lacunary wavelet series , 2000 .

[41]  K. Kaleta,et al.  Transition in the decay rates of stationary distributions of Lévy motion in an energy landscape. , 2015, Physical review. E.

[42]  F. Kühn Solutions of L\'evy-driven SDEs with unbounded coefficients as Feller processes , 2016 .

[43]  J. Lőrinczi,et al.  Spectral Properties of the Massless Relativistic Quartic Oscillator , 2010, 1712.02816.