Log-correlated Gaussian fields: an overview

We survey the properties of the log-correlated Gaussian field (LGF), which is a centered Gaussian random distribution (generalized function) h on ℝ d , defined up to a global additive constant.

[1]  M. Jimbo,et al.  Introduction to Microlocal Analysis , 1976 .

[2]  Lionel Levine,et al.  Internal DLA and the Gaussian free field , 2011, 1101.0596.

[3]  C. Lanczos Applied Analysis , 1961 .

[4]  J. Bell Gaussian Hilbert spaces , 2015 .

[5]  T. Lindstrøm,et al.  FRACTIONAL BROWNIAN FIELDS AS INTEGRALS OF WHITE NOISE , 1993 .

[6]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[7]  Scott Sheffield,et al.  Fractional Gaussian fields: A survey , 2014, 1407.5598.

[8]  P. Hintz 18.157: INTRODUCTION TO MICROLOCAL ANALYSIS , 2019 .

[9]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[10]  Zhengyuan Zhu,et al.  PARAMETER ESTIMATION FOR FRACTIONAL BROWNIAN SURFACES , 2003 .

[11]  O. Schramm,et al.  A contour line of the continuum Gaussian free field , 2010, 1008.2447.

[12]  Statistica Sinica , .

[13]  Xuelei Chen,et al.  Cosmological parameter fittings with the BICEP2 data , 2014, 1403.6462.

[14]  A. Cipriani High points for the membrane model in the critical dimension , 2013, 1303.6792.

[15]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[16]  J. Kahane Sur le chaos multiplicatif , 1985 .

[17]  Scott Sheffield,et al.  Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.

[18]  D. Jutras Quebec. , 1907 .

[19]  A. Krall Applied Analysis , 1986 .

[20]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[21]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[22]  E. Harrell Communications in Partial Differential Equations , 2007 .

[23]  Scott Sheffield,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.

[24]  D. Jakobson,et al.  Gaussian Free Fields and KPZ Relation in $${\mathbb{R}^4}$$R4 , 2014 .

[25]  Luis G. Gorostiza,et al.  Fractional Brownian motion via fractional Laplacian , 1999 .

[26]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[27]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[28]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[29]  Raoul Robert,et al.  FORECASTING VOLATILITY WITH THE MULTIFRACTAL RANDOM WALK MODEL , 2008, 0801.4220.

[30]  Josselin Garnier Probability Theory and Related Fields. Manuscript-nr. Stochastic Invariant Imbedding Application to Stochastic Diierential Equations with Boundary Conditions , 2007 .

[31]  N. Kurt Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension , 2008, 0801.0551.

[32]  Log-Normal continuous cascades: aggregation properties and estimation. Application to financial time-series , 2008, 0804.0185.

[33]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[34]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[35]  R. Wilson Modern Cosmology , 2004 .

[36]  Z. Ciesielski,et al.  On Lévy's Brownian Motion with several - dimensional time , 1975 .

[37]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[38]  P. Levy Le mouvement brownien , 1955 .

[39]  J. P. McKean Brownian Motion with a Several-Dimensional Time , 1963 .

[40]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[41]  Romain Allez,et al.  Lognormal $${\star}$$ -scale invariant random measures , 2011, 1102.1895.

[42]  Hironobu Sakagawa On the Free Energy of a Gaussian Membrane Model with External Potentials , 2012 .

[43]  B. M. Fulk MATH , 1992 .

[44]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.