A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain

[1]  R. K. Mohanty,et al.  A fourth‐order difference method for elliptic equations with nonlinear first derivative terms , 1989 .

[2]  R. K. Mohanty,et al.  Fourth‐order difference methods for the system of 2D nonlinear elliptic partial differential equations , 1991 .

[3]  John J. Kasab,et al.  Quasilinear boundary element method for nonlinear Poisson type problems , 1995 .

[4]  R. K. Mohanty Order h 4 difference methods for a class of singular two space elliptic boundary value problems , 1997 .

[5]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[6]  Palghat A. Ramachandran,et al.  A Particular Solution Trefftz Method for Non-linear Poisson Problems in Heat and Mass Transfer , 1999 .

[7]  S. Atluri,et al.  A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems , 1999 .

[8]  Palghat A. Ramachandran,et al.  Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems , 2001 .

[9]  FOURTH ORDER NINE POINT UNEQUAL MESH DISCRETIZATION FOR THE SOLUTION OF 2D NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2006 .

[10]  R. K. Mohanty,et al.  A new fourth order discretization for singularly perturbed two dimensional non-linear elliptic boundary value problems , 2006, Appl. Math. Comput..

[11]  Q. Qin,et al.  A meshless method for generalized linear or nonlinear Poisson-type problems , 2006 .

[12]  Chein-Shan Liu,et al.  A Fictitious Time Integration Method for Two-Dimensional Quasilinear Elliptic Boundary Value Problems , 2008 .

[13]  Chein-Shan Liu,et al.  A Fictitious Time Integration Method for a Quasilinear Elliptic Boundary Value Problem, Defined in an Arbitrary Plane Domain , 2009 .

[14]  Chein-Shan Liu,et al.  Fictitious Time Integration Method of Fundamental Solutions with Chebyshev Polynomials for Solving Poisson-type Nonlinear PDEs , 2010 .

[15]  Chein-Shan Liu,et al.  A New Insight into the Differential Quadrature Method in Solving 2-D Elliptic PDEs , 2011 .

[16]  Hamid Zahrouni,et al.  Perturbation technique and method of fundamental solution to solve nonlinear Poisson problems , 2011 .

[17]  Chein-Shan Liu A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR SOLVING NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[18]  Q. Qin,et al.  Solving the nonlinear Poisson-type problems with F-Trefftz hybrid finite element model , 2012 .

[19]  Chein-Shan Liu An equilibrated method of fundamental solutions to choose the best source points for the Laplace equation , 2012 .

[20]  C. Tsai Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations , 2012 .

[21]  Hamid Zahrouni,et al.  High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems , 2012 .

[22]  Chein-Shan Liu,et al.  Optimally scaled vector regularization method to solve ill-posed linear problems , 2012, Appl. Math. Comput..

[23]  Chein-Shan Liu A Two-Side Equilibration Method to Reduce theCondition Number of an Ill-Posed Linear System , 2013 .

[24]  S. Atluri,et al.  Numerical solution of the Laplacian Cauchy problem by using a better postconditioning collocation Trefftz method , 2013 .

[25]  R. K. Mohanty,et al.  High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems , 2013 .

[26]  Chung-Lun Kuo,et al.  A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems , 2016 .

[27]  Chein-Shan Liu,et al.  A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems , 2016, J. Comput. Phys..