Next‐Generation, High‐Energy‐Density Redox Flow Batteries

Redox flow batteries are experiencing rapid growth for stationary energy-storage applications. To satisfy the demand for wider applications, however, improved energy density of redox flow batteries is desperately required. Past and present efforts to increase the energy density are briefly surveyed herein and several strategies are explored.

[1]  Lu Wang,et al.  Electrochemical study on polypyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery , 2014 .

[2]  Qinghua Liu,et al.  Dramatic performance gains in vanadium redox flow batteries through modified cell architecture , 2012 .

[3]  Jean-Marie Tarascon,et al.  Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries , 2013 .

[4]  Jeffrey Read,et al.  A new direction for the performance improvement of rechargeable lithium/sulfur batteries , 2012 .

[5]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[6]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[7]  Dh Shin Dong Hyeop Shin,et al.  Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film , 2011 .

[8]  Min‐Sik Park,et al.  Development of metal-based electrodes for non-aqueous redox flow batteries , 2011 .

[9]  Zhenguo Yang,et al.  Chloride supporting electrolytes for all-vanadium redox flow batteries. , 2011, Physical chemistry chemical physics : PCCP.

[10]  Chris Menictas,et al.  Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell , 1996 .

[11]  Sally M. Benson,et al.  The energetic implications of curtailing versus storing solar- and wind-generated electricity , 2013 .

[12]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[13]  Qing Wang,et al.  Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. , 2006, Angewandte Chemie.

[14]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[15]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[16]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[17]  D. Aurbach,et al.  The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems. , 2014, The journal of physical chemistry letters.

[18]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[19]  Yongyao Xia,et al.  High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte. , 2013, Chemical communications.

[20]  G. R. Li,et al.  Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes , 2013 .

[21]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[22]  M. Skyllas-Kazacos,et al.  Vanadium redox cell electrolyte optimization studies , 1990 .

[23]  Bo B. Iversen,et al.  Controlling Size, Crystallinity, and Electrochemical Performance of Li4Ti5O12 Nanocrystals , 2013 .

[24]  W. Craig Carter,et al.  Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries , 2012 .

[25]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[26]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[27]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[28]  Dong Fang,et al.  Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide , 2011 .

[29]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[30]  Sanjoy Banerjee,et al.  Gas evolution in a flow-assisted zincnickel oxide battery , 2011 .

[31]  Maria Skyllas-Kazacos,et al.  Characteristics and performance of 1 kW UNSW vanadium redox battery , 1991 .

[32]  Xueping Gao,et al.  A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. , 2013, ChemSusChem.

[33]  M. H. Chakrabarti,et al.  Evaluation of electrolytes for redox flow battery applications , 2007 .

[34]  B. Kastening,et al.  Design of a slurry electrode reactor system , 2013 .

[35]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[36]  Y. Gogotsi,et al.  A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor , 2013 .

[37]  Li Zhang,et al.  Preliminary study of single flow zinc-nickel battery , 2007 .

[38]  Jeremy Barker,et al.  Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4 F , 2003 .

[39]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[40]  L. Kloo,et al.  Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. , 2003, Chemical reviews.

[41]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[42]  Bryan D. Sawyer,et al.  Impact of electrode separator on performance of a zinc/alkaline/manganese dioxide packed-bed electrode flow battery , 2011 .

[43]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[44]  Zheng Li,et al.  Electronic Supplementary Information Aqueous Semi-Solid Flow Cell: Demonstration and Analysis , 2013 .

[45]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[46]  Michael Grätzel,et al.  Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. , 2013, Physical chemistry chemical physics : PCCP.

[47]  Ping He,et al.  Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries , 2012 .

[48]  J. Jorné,et al.  The zinc-chlorine battery: half-cell overpotential measurements , 1979 .

[49]  C. Ponce de León,et al.  The influence of operational parameters on the performance of an undivided zinc–cerium flow battery , 2012 .

[50]  Hye Ryung Byon,et al.  High‐Performance Lithium‐Iodine Flow Battery , 2013 .

[51]  C. R. Dennison,et al.  The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery , 2012 .

[52]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[53]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[54]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[55]  L. H. Thaller,et al.  Redox flow cell energy storage systems , 1979 .

[56]  Huamin Zhang,et al.  Redox Flow Battery for Energy Storage , 2010, ECS Transactions.

[57]  Pierre-Louis Taberna,et al.  Non-Aqueous Li-Based Redox Flow Batteries , 2012 .

[58]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[59]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[60]  Daniel A. Steingart,et al.  Zinc morphology in zinc-nickel flow assisted batteries and impact on performance , 2011 .

[61]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[62]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[63]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[64]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[65]  Hye Ryung Byon,et al.  High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode , 2013, Nature Communications.

[66]  R. C. Knechtli,et al.  Zinc‐Bromine Secondary Battery , 1977 .

[67]  Huamin Zhang,et al.  Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes , 2005 .

[68]  Huamin Zhang,et al.  Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack , 2006 .

[69]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[70]  M. A. Reid,et al.  Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half‐Cell in the Iron‐Chromium Redox Energy Storage System , 1985 .

[71]  Yarong Wang,et al.  A Li-liquid cathode battery based on a hybrid electrolyte. , 2011, ChemSusChem.

[72]  V. Presser,et al.  Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors , 2013 .