Optimal Control Formulations of Vibration Reduction Problems

Design of controls to move a flexible body such as a robot arm while minimizing unwanted vibrations has been described in many papers and presented in many forms. For the vibration reduction issue alone, it is shown that almost all the proposed designs can be formulated as optimal controls of either the fixed final time or the minimum time type. Furthermore, it is shown that under reasonable assumptions the two types have the same solution and are thus equivalent. Continuous time, tapped-delay-line input shaping filters, and discrete controls are considered. It is shown that the discrete equivalent of the general vibration reduction problem is a convex problem for the fixed final time case and quasi-convex for the free final time problem. The two formulations are compared in terms of computation complexity as well as practical implementation issues.

[1]  Otto J. M. Smith Posicast Control of Damped Oscillatory Systems , 1957, Proceedings of the IRE.

[2]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[3]  C. La-orpacharapan,et al.  Control of flexible structures with a projected phase-plane approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  William Singhose,et al.  Computational framework for digital input shapers using linear optimisation , 2006 .

[5]  P.H. Meckl,et al.  Robust time-optimal command shaping for velocity tracking of piezoelectric actuators , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[6]  P. Meckl,et al.  Input robustification for motion control of systems without rigid-body mode , 2005, Proceedings of the 2005, American Control Conference, 2005..

[7]  N. Seth,et al.  Vibration control of a coordinate measuring machine , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[8]  T. Singh,et al.  High precision point-to-point maneuvering of an experimental structure subject to friction via adaptive impulsive control. , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[9]  Ichiro Watanabe,et al.  Digital shaping filters for reducing machine vibration , 1992, IEEE Trans. Robotics Autom..

[10]  Tarunraj Singh,et al.  Robust Minimum Power/Jerk Control of Maneuvering Structures , 2001 .

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Bong Wie,et al.  Robust Fuel- and Time-Optimal Control of Uncertain Flexible Space Structures , 1993, 1993 American Control Conference.

[13]  Ken Cox,et al.  Robust Fuel- and Time-Optimal Control of Uncertain Flexible Space Structures , 1993 .

[14]  W. Marsden I and J , 2012 .

[15]  Lucy Y. Pao,et al.  Input shaping designs to account for uncertainty in both frequency and damping in flexible structures , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[16]  Abdullah Al Mamun,et al.  Hard Disk Drive: Mechatronics and Control , 2006 .

[17]  Warren P. Seering,et al.  FUEL-EFFICIENT PULSE COMMAND PROFILES FOR FLEXIBLE SPACECRAFT , 1996 .

[18]  Warren P. Seering,et al.  INPUT SHAPING FOR VIBRATION REDUCTION WITH SPECIFIED INSENSITIVITY TO MODELING ERRORS , 1996 .

[19]  T. Singh,et al.  Jerk limited input shapers , 2004, Proceedings of the 2004 American Control Conference.

[20]  Lucy Y. Pao,et al.  Discrete time-optimal command shapers and controls for multi-input multi-output systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[21]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[22]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[23]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[24]  Warren P. Seering,et al.  Time-Optimal Negative Input Shapers , 1997 .

[25]  Gene F. Franklin,et al.  Minimum Move-Vibration Control for Flexible Structures , 2008 .

[26]  William Singhose,et al.  Verifying Robust Time-Optimal Commands for Multimode Flexible Spacecraft , 1997 .

[27]  Jonathan P. How,et al.  Input Shaping Design for Multi-Input Flexible Systems , 1999 .

[28]  Gene F. Franklin,et al.  Direct Verification of Parametric Solution for Vibration Reduction Control Problems , 2008 .

[29]  R. C. Thompson,et al.  Survey of time-optimal attitude maneuvers , 1994 .

[30]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[31]  A. Dhanda,et al.  Vibration control via pre-loading , 2005, Proceedings of the 2005, American Control Conference, 2005..

[32]  Tarunraj Singh,et al.  Fuel/Time Optimal Control of the Benchmark Problem , 1995 .

[33]  Azdiana Md. Yusop Input shaping for vibration-free positioning of flexible systems , 2006 .

[34]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[35]  Otto J. M. Smith,et al.  Feedback control systems , 1958 .

[36]  Tarunraj Singh,et al.  Jerk Limited Time Optimal Control of Flexible Structures , 2001, Dynamic Systems and Control.

[37]  Tarunraj Singh,et al.  Controller Design for Flexible Systems with Friction: Pulse Amplitude Control , 2004 .

[38]  William Singhose,et al.  EXTRA-INSENSITIVE INPUT SHAPERS FOR CONTROLLING FLEXIBLE SPACECRAFT , 1996 .

[39]  William Singhose,et al.  Vibration Reduction Using Multi-Hump Input Shapers , 1997 .

[40]  T. Conord,et al.  Robust input shaper design using Linear Matrix Inequalities , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[41]  Tarunraj Singh,et al.  Robust time-optimal control - Frequency domain approach , 1994 .

[42]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[43]  Qiang Liu,et al.  Robust time-optimal control of uncertain structural dynamic systems , 1993 .

[44]  A. Dhanda,et al.  An Improved 2-DOF Proximate Time Optimal Servomechanism , 2009, IEEE Transactions on Magnetics.

[45]  Qingze Zou,et al.  Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy , 2004, IEEE Transactions on Control Systems Technology.

[46]  Warren P. Seering,et al.  Creating time-optimal commands for systems with denominator dynamics , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[47]  Warren P. Seering,et al.  An extension of command shaping methods for controlling residual vibration using frequency sampling , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[48]  M.J. Robertson,et al.  Closed-form deflection-limiting commands , 2005, Proceedings of the 2005, American Control Conference, 2005..

[49]  L. Silverberg,et al.  Fuel Optimal Propulsive Maneuver of an Experimental Structure Exhibiting Spacelike Dynamics , 1996 .

[50]  Warren P. Seering,et al.  Slewing Flexible Spacecraft with Deflection-Limiting Input shaping , 1997 .

[51]  L.Y. Pao,et al.  An efficient algorithm for the generation of multiple-mode input shaping sequences , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[52]  D. Croft,et al.  Vibration compensation for high speed scanning tunneling microscopy , 1999 .

[53]  Aurelio Piazzi,et al.  Point-to-Point Motion Planning for Servosystems With Elastic Transmission Via Optimal Dynamic Inversion , 2001 .

[54]  P. Meckl,et al.  Reducing residual vibration in systems with uncertain resonances , 1988, IEEE Control Systems Magazine.

[55]  Warren P. Seering,et al.  Closed-form generation of specified-fuel commands for flexible systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[56]  Santosh Devasia,et al.  Experimental and theoretical results in output-trajectory redesign for flexible structures , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[57]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[58]  Tarunraj Singh,et al.  Desensitized control of vibratory systems with friction: linear programming approach , 2004 .

[59]  C. La-orpacharapan,et al.  Shaped time-optimal feedback control for disk-drive systems with back-electromotive force , 2004, IEEE Transactions on Magnetics.

[60]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[61]  Lucy Y. Pao Multi-input shaping design for vibration reduction , 1999, Autom..

[62]  Warren P. Seering,et al.  On-off control of flexible spacecraft with specified fuel usage , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[63]  Tarunraj Singh,et al.  Controller Design for Flexible Systems With Friction: Pulse , 2005 .

[64]  T. Singh Minimax Design of Robust Controllers for Flexible Systems , 2002 .

[65]  Stephen Yurkovich,et al.  Vibration control of a two-link flexible robot arm , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[66]  Tarunraj Singh,et al.  Robust time-delay control of multimode systems , 1995 .

[67]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[68]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[69]  Peter H. Meckl,et al.  The application of command shaping to the tracking problem , 2003, Proceedings of the 2003 American Control Conference, 2003..

[70]  Marcelo Lopes De Oliveira E Souza Exactly solving the weighted time/fuel optimal control of an undamped harmonic oscillator , 1988 .

[71]  Tarunraj Singh,et al.  Fuel/Time Optimal Control of Flexible Space Structures: A Frequency Domain Approach , 1999 .

[72]  William Singhose,et al.  Command Shaping in Tracking Control of a Two-Link Flexible Robot , 1998 .

[73]  William Singhose,et al.  Reference Command Shaping Using Specified-Negative-Amplitude Input Shapers for Vibration Reduction , 2004 .

[74]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[75]  William Singhose,et al.  Limiting excitation of unmodeled high modes with negative input shapers , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[76]  Eugene M. Cliff,et al.  Time-optimal slewing of flexible spacecraft , 1992 .

[77]  Lucy Y. Pao,et al.  Input shaper designs for minimizing the expected level of residual vibration in flexible structures , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[78]  Stephen Yurkovich,et al.  Vibration control of a two-link flexible robot arm , 1993 .

[79]  Aurelio Piazzi,et al.  Minimum-time system-inversion-based motion planning for residual vibration reduction , 2000 .

[80]  John Y. Hung Feedback control with Posicast , 2003, IEEE Trans. Ind. Electron..

[81]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[82]  Warren P. Seering,et al.  Closed-form methods for on-off control of multi-mode flexible structures , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[83]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[84]  Sudarshan P. Bhat,et al.  Precise Point-to-Point Positioning Control of Flexible Structures , 1990 .

[85]  Neil Genzlinger A. and Q , 2006 .

[86]  Warren P. Seering,et al.  A zero-placement technique for designing shaped inputs to suppress multiple-mode vibration , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[87]  J. Hung Posicast Control Past and Present , 2022 .

[88]  Neil C. Singer,et al.  Residual Vibration Reduction in Computer controlled Machines , 1989 .

[89]  William Singhose,et al.  Closed-Form Specified-Fuel Commands for On-Off Thrusters , 2006 .

[90]  U.-H. Park,et al.  DESIGN AND SENSITIVITY ANALYSIS OF AN INPUT SHAPING FILTER IN THE Z -PLANE , 2001 .

[91]  Warren P. Seering,et al.  Creating Time-Optimal Commands with Practical Constraints , 1999 .

[92]  Kam K. Leang,et al.  Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures , 1998 .

[93]  P. Meckl,et al.  Time-optimal motion control of piezoelectric actuator: STM application , 2004, Proceedings of the 2004 American Control Conference.

[94]  Lucy Y. Pao,et al.  Time-optimal commands with specified fuel usage for controlling flexible structures , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).