A Lehmer-type height lower bound for abelian surfaces over function fields

Let K be a 1-dimensional function field over an algebraically closed field of characteristic 0, and let A/K be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in A(K̄). More precisely, we prove that there are constants C1, C2 > 0 such that the normalized Bernoulli-part of the canonical height is bounded below by ĥBA(P ) ≥ C1 [ K(P ) : K ]−2 for all points P ∈ A(K̄) whose height satisfies 0 < ĥA(P ) ≤ C2.

[1]  Compositio Mathematica,et al.  SMALL VALUES OF THE QUADRATIC PART OF THE NÉRON-TATE HEIGHT ON AN ABELIAN VARIETY , 2019 .

[2]  J. Verger-Gaugry A Survey on the Conjecture of Lehmer and the Conjecture of Schinzel-Zassenhaus , 2019 .

[3]  A. Werner Local heights on Mumford curves , 1996 .

[4]  D. Masser Counting points of small height on elliptic curves , 1989 .

[5]  Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes , 2008 .

[6]  A. Bazylewicz,et al.  On the product of the conjugates outside the unit circle of an algebraic integer , 1976 .

[7]  Hugh L. Montgomery,et al.  Algebraic integers near the unit circle , 1971 .

[8]  S. David Minorations de hauteurs sur les variétés abéliennes , 1993 .

[9]  D. H. Lehmer Factorization of Certain Cyclotomic Functions , 1933 .

[10]  M. Hindry,et al.  Minoration de la hauteur de Néron-Tate sur les variétés abÉliennes de type C. M , 2000 .

[11]  Edward Dobrowolski,et al.  On a question of Lehmer and the number of irreducible factors of a polynomial , 1979 .

[12]  A lower bound for the canonical height on abelian varieties over abelian extensions , 2003, math/0312393.

[13]  Positivite et discretion des points algebriques des courbes , 1996, alg-geom/9606017.

[14]  A. Werner Local heights on abelian varieties with split multiplicative reduction , 1997, Compositio Mathematica.

[15]  A lower bound for the canonical height on elliptic curves over abelian extensions , 2003, math/0305041.

[16]  Valéry Mahé,et al.  Some consequences of Masser’s counting theorem on elliptic curves , 2017 .

[17]  Shou-wu Zhang Equidistribution of small points on abelian varieties , 1998 .

[18]  C. Stewart Algebraic integers whose conjugates lie near the unit circle , 1978 .

[19]  Local heights on Abelian varieties and rigid analytic uniformization. , 1998 .

[20]  Nicolas Ratazzi Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M. , 2005, math/0502186.

[21]  John Boxall,et al.  Une propriété des hauteurs locales de Néron-Tate sur les variétés abéliennes , 1995 .

[22]  Lower bounds for the canonical height on elliptic curves over abelian extensions , 2002, math/0212132.

[23]  J. Silverman Lower bounds for height functions , 1984 .

[24]  D. Masser,et al.  Lower bounds for heights on elliptic curves , 1980 .

[25]  Francesco Amoroso,et al.  A Lower Bound for the Height in Abelian Extensions , 2000 .

[26]  Minorations des hauteurs normalisées des sous-variétés des puissances des courbes elliptiques , 2010 .

[27]  Joseph H. Silverman,et al.  The canonical height and integral points on elliptic curves , 1988 .

[28]  S. David,et al.  Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes II , 2002 .