Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics

The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this first installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of design methods and optical performance metrics developed for coronagraph instruments. The design and optimization of coronagraphs for future telescopes has progressed rapidly over the past several years in the context of space mission studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based telescopes. Design tools have been developed at several institutions to optimize a variety of coronagraph mask types. We aim to give a broad overview of the approaches used, examples of their utility, and provide the optimization tools to the community. Though it is clear that the basic function of coronagraphs is to suppress starlight while maintaining light from off-axis sources, our community lacks a general set of standard performance metrics that apply to both detecting and characterizing exoplanets. The attendees of the OOC workshop agreed that it would benefit our community to clearly define quantities for comparing the performance of coronagraph designs and systems. Therefore, we also present a set of metrics that may be applied to theoretical designs, testbeds, and deployed instruments. We show how these quantities may be used to easily relate the basic properties of the optical instrument to the detection significance of the given point source in the presence of realistic noise.

[1]  David Mouillet,et al.  Apodized Lyot coronagraph for VLT-SPHERE: laboratory tests and performances of a first prototype in the visible , 2008, Astronomical Telescopes + Instrumentation.

[2]  Donald T. Gavel,et al.  Four-quadrant phase mask coronagraph: analytical calculation and pupil geometry , 2003, SPIE Astronomical Telescopes + Instrumentation.

[3]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.

[4]  Mamadou N'Diaye,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. V. HYBRID SHAPED PUPIL DESIGNS FOR IMAGING EARTH-LIKE PLANETS WITH FUTURE SPACE OBSERVATORIES , 2016, 1601.02614.

[5]  R. Soummer,et al.  HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS , 2010 .

[6]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[7]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[8]  R. Terrile,et al.  A circumstellar disk around Beta pictoris. , 1984, Science.

[9]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[10]  B. Lyot The study of the solar corona and prominences without eclipses (George Darwin Lecture, 1939) , 1939 .

[11]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[12]  G. Ruane,et al.  The LUVOIR architecture "A" coronagraph instrument , 2017, Optical Engineering + Applications.

[13]  Alexis Carlotti,et al.  Gemini Planet Imager coronagraph testbed results , 2010, Astronomical Telescopes + Instrumentation.

[14]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[15]  Ravi K. Komanduri,et al.  Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. , 2013, Optics express.

[16]  C. Jenkins Optical vortex coronagraphs on ground-based telescopes , 2007, 0709.0153.

[17]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[18]  Amir Give'on,et al.  Pair-wise, deformable mirror, image plane-based diversity electric field estimation for high contrast coronagraphy , 2011, Optical Engineering + Applications.

[19]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[20]  O. Guyon LIMITS OF ADAPTIVE OPTICS FOR HIGH-CONTRAST IMAGING , 2005, astro-ph/0505086.

[21]  Stuart B. Shaklan,et al.  Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction , 2018, Astronomical Telescopes + Instrumentation.

[22]  Antoine Labeyrie,et al.  Lock-In Image Subtraction: Detectability of Circumstellar Planets with the Large Space Telescope , 1975 .

[23]  J. Yu High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography , 1995 .

[24]  R. Soummer,et al.  TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED , 2011 .

[25]  P. Nisenson,et al.  Detection of Earth-like Planets Using Apodized Telescopes , 2001, astro-ph/0101241.

[26]  J. Angel,et al.  First On-Sky High-Contrast Imaging with an Apodizing Phase Plate* , 2007, astro-ph/0702324.

[27]  D. Mouillet,et al.  A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc , 1997 .

[28]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[29]  Gordon A. H. Walker,et al.  A search for substellar companions to solar-type stars , 1988 .

[30]  L. Mugnier,et al.  Coronagraphic phase diversity: performance study and laboratory demonstration , 2013, 1303.0121.

[31]  Donald T. Gavel,et al.  Four Quadrant Phase Mask : Analytical Calculation and Pupil Geometry , 2004 .

[32]  D. W. Davies Direct imaging of planetary systems around nearby stars , 1980 .

[33]  Wesley A. Traub,et al.  Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy , 2012, Other Conferences.

[34]  Nikole K. Lewis,et al.  End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family , 2015, SPIE Optical Engineering + Applications.

[35]  Alexis Carlotti,et al.  Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes , 2016, 1601.05121.

[36]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[37]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[38]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[39]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[40]  Dimitri Mawet,et al.  Observing Exoplanets with High Dispersion Coronagraphy. I. The Scientific Potential of Current and Next-generation Large Ground and Space Telescopes , 2017, 1703.00582.

[41]  G Rousset,et al.  High-order adaptive optics requirements for direct detection of extrasolar planets: Application to the SPHERE instrument. , 2006, Optics express.

[42]  Mamadou N'Diaye,et al.  Apodized Pupil Lyot coronagraphs with arbitrary aperture telescopes: novel designs using hybrid focal plane masks , 2018, Astronomical Telescopes + Instrumentation.

[43]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[44]  Emiel Por,et al.  Optimal design of apodizing phase plate coronagraphs , 2017, Optical Engineering + Applications.

[45]  Olivier Guyon,et al.  Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging , 2017, Optical Engineering + Applications.

[46]  John E. Krist,et al.  Assessing the performance limits of internal coronagraphs through end-to-end modeling , 2013, Optics & Photonics - Optical Engineering + Applications.

[47]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[48]  O. Guyon,et al.  Phase-Induced Amplitude Apodization on centrally obscured pupils: design and first laboratory demonstration for the Subaru Telescope pupil , 2009, 0903.5001.

[49]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[50]  N. Jeremy Kasdin,et al.  Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter , 2016, 1602.02044.

[51]  Mamadou N'Diaye,et al.  Capabilities of ACAD-OSM, an active method for the correction of aperture discontinuities , 2017 .

[52]  Frans Snik,et al.  The vector-APP: a broadband apodizing phase plate that yields complementary PSFs , 2012, Other Conferences.

[53]  Jacques-Robert Delorme,et al.  Characterization of microdot apodizers for imaging exoplanets with next-generation space telescopes , 2018, Astronomical Telescopes + Instrumentation.

[54]  James B. Breckinridge,et al.  Space Telescope Low Scattered Light Camera-A Model , 1982, Astronomical Telescopes and Instrumentation.

[55]  C. Dorrer,et al.  Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph , 2008, 0810.5678.

[56]  Olivier Guyon,et al.  Ground-based adaptive optics coronagraphic performance under closed-loop predictive control , 2017, 1712.07189.

[57]  James P. Mills,et al.  Direct imaging of nonsolar planets with infrared telescopes using apodized coronagraphs. , 1991, Applied optics.

[58]  Claude Aime,et al.  The Usefulness and Limits of Coronagraphy in the Presence of Pinned Speckles , 2004 .

[59]  C. Aime,et al.  Achromatic dual-zone phase mask stellar coronagraph , 2003 .

[60]  Pantazis Mouroulis,et al.  Optical design of the Terrestrial Planet Finder Coronagraph starlight suppression system , 2005, SPIE Optics + Photonics.

[61]  Matthew D. Lallo,et al.  Simulating point spread functions for the James Webb Space Telescope with WebbPSF , 2012, Other Conferences.

[62]  John E. Krist,et al.  PROPER: an optical propagation library for IDL , 2007, SPIE Optical Engineering + Applications.

[63]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[64]  Benjamin F. Lane,et al.  PICTURE: a sounding rocket experiment for direct imaging of an extrasolar planetary environment , 2012, Other Conferences.

[65]  Jian Ge,et al.  Comparative Lyot Coronagraphy with Extreme Adaptive Optics Systems , 2007 .

[66]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[67]  Kjetil Dohlen,et al.  NEAR: new earths in the Alpha Cen Region (bringing VISIR as a "visiting instrument" to ESO-VLT-UT4) , 2018, Astronomical Telescopes + Instrumentation.

[68]  Bertrand Mennesson,et al.  Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements , 2018 .

[69]  S. R. Kulkarni,et al.  Coronagraphic Survey for Companions of Stars within 8 pc , 2020 .

[70]  M. Tamura,et al.  Design and laboratory demonstration of an achromatic vector vortex coronagraph. , 2013, Optics express.

[71]  Mark Clampin,et al.  Coronagraphic Imaging of the beta Pictoris Circumstellar Disk: Evidence of Changing Disk Structure within 100 AU , 1993 .

[72]  Stuart B. Shaklan,et al.  Optimization of coronagraph design for segmented aperture telescopes , 2017, Optical Engineering + Applications.

[73]  Amir Give'on,et al.  Broadband wavefront correction algorithm for high-contrast imaging systems , 2007, SPIE Optical Engineering + Applications.

[74]  L. Pueyo,et al.  HIGH-CONTRAST IMAGING WITH AN ARBITRARY APERTURE: ACTIVE COMPENSATION OF APERTURE DISCONTINUITIES , 2012, 1211.6112.

[75]  Christophe Dorrer,et al.  Design and analysis of binary beam shapers using error diffusion , 2007 .

[76]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[77]  C. Aime,et al.  Speckle Noise and Dynamic Range in Coronagraphic Images , 2007, 0706.1739.

[78]  Marshall D. Perrin,et al.  Accelerated modeling of near and far-field diffraction for coronagraphic optical systems , 2018, Astronomical Telescopes + Instrumentation.

[79]  Pierre Riaud,et al.  Improving Earth-like planets' detection with an ELT: the differential radial velocity experiment , 2007 .

[80]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[81]  Michael J. Escuti,et al.  ON-SKY PERFORMANCE ANALYSIS OF THE VECTOR APODIZING PHASE PLATE CORONAGRAPH ON MagAO/Clio2 , 2017, 1702.04193.

[82]  D. A. Golimowski,et al.  A Coronagraphic Survey for Companions of Stars within 8 Parsecs , 2001 .

[83]  Mamadou N'Diaye,et al.  Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions , 2017 .

[84]  John E. Krist,et al.  Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances , 2015 .

[85]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[86]  D. Mawet,et al.  Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit , 2017, 1703.00583.

[87]  D. Mawet,et al.  Apodized phase mask coronagraphs for arbitrary apertures - II. Comprehensive review of solutions for the vortex coronagraph , 2014, 1404.2845.

[88]  Eric E. Bloemhof,et al.  Behavior of Remnant Speckles in an Adaptively Corrected Imaging System , 2001 .

[89]  Dmitry Savransky,et al.  Maximized exoEarth candidate yields for starshades , 2016 .

[90]  Olivier Guyon,et al.  Focal Plane Phase Masks for PIAA: Design and Manufacturing , 2016 .

[91]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[92]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[93]  Laurent Pueyo,et al.  Active compensation of aperture discontinuities for WFIRST-AFTA: analytical and numerical comparison of propagation methods and preliminary results with a WFIRST-AFTA-like pupil , 2015, 1511.01929.

[94]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[95]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[96]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[97]  Dimitri Mawet,et al.  A New Standard for Assessing the Performance of High Contrast Imaging Systems , 2017, 1711.01215.

[98]  Olivier Guyon,et al.  Modeling coronagraphic extreme wavefront control systems for high contrast imaging in ground and space telescope missions , 2018, Astronomical Telescopes + Instrumentation.

[99]  Alexis Carlotti,et al.  Demonstration of vortex coronagraph concepts for on-axis telescopes on the Palomar Stellar Double Coronagraph , 2014, Astronomical Telescopes and Instrumentation.

[100]  Frantz Martinache,et al.  An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy , 2015 .

[101]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[102]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS , 2011 .

[103]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[104]  Alexis Carlotti,et al.  Apodized phase mask coronagraphs for arbitrary apertures , 2013 .

[105]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[106]  John E. Krist,et al.  Phase-induced amplitude apodization complex mask coronagraph mask fabrication, characterization, and modeling for WFIRST-AFTA , 2016 .

[107]  Olivier Guyon,et al.  Coronagraph instrument for WFIRST-AFTA , 2016 .

[108]  John E. Krist,et al.  Sensitivity of the WFIRST coronagraph performance to key instrument parameters , 2017, Optical Engineering + Applications.

[109]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS , 2014, 1412.2751.

[110]  H. Nieuwenhuijzen,et al.  Image processing techniques in astronomy , 1975 .

[111]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[112]  Pierre Baudoz,et al.  High-contrast imaging at small separations: impact of the optical configuration of two deformable mirrors on dark holes , 2017 .

[113]  John E. Krist,et al.  Assessing the performance limits of internal coronagraphs through end-to-end modeling: a NASA TDEM study , 2011, Optical Engineering + Applications.

[114]  Bradford A. Smith,et al.  A Circumstellar Disk Around β Pictoris , 1984, Science.

[115]  Jeffrey Jewell,et al.  Apodized vortex coronagraph designs for segmented aperture telescopes , 2016, Astronomical Telescopes + Instrumentation.

[116]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[117]  D. Slepian Analytic Solution of Two Apodization Problems , 1965 .

[118]  Christophe Dorrer,et al.  Calibrating IR optical densities for the Gemini Planet Imager extreme adaptive optics coronagraph apodizers , 2009, Optical Engineering + Applications.

[119]  M. Tamura,et al.  An Eight-Octant Phase-Mask Coronagraph , 2008 .

[120]  Robert J. Vanderbei,et al.  Lyot coronagraph design study for large, segmented space telescope apertures , 2016, Astronomical Telescopes + Instrumentation.

[121]  R. Vanderbei,et al.  Optimal pupil apodizations of arbitrary apertures for high-contrast imaging. , 2011, Optics express.

[122]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[123]  David S. Doelman,et al.  High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator , 2018, Astronomical Telescopes + Instrumentation.

[124]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[125]  Dimitri Mawet,et al.  Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures , 2015, SPIE Optical Engineering + Applications.

[126]  C. Dorrer,et al.  Design, analysis, and testing of a microdot apodizer for the apodized pupil Lyot coronagraph - II. Impact of the dot size , 2009, 0904.2481.

[127]  L. Pueyo,et al.  Optimal dark hole generation via two deformable mirrors with stroke minimization. , 2009, Applied optics.

[128]  R. Soummer,et al.  Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm , 2017 .

[129]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[130]  John E. Krist,et al.  Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics , 2016 .

[131]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[132]  Grover A. Swartzlander,et al.  Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph , 2015, 1509.05750.

[133]  M. Escuti,et al.  Direct-writing of complex liquid crystal patterns. , 2014, Optics express.

[134]  Naosuke Ino “ 4 . 3 : An Adaptive Algorithm for Spatial Grey Scale , 2017 .

[135]  Paul Kalas,et al.  Asymmetries in the Beta Pictoris Dust Disk , 1995 .

[136]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[137]  Mamadou N'Diaye,et al.  Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs , 2017, 1703.02994.

[138]  Eric E. Bloemhof,et al.  Palomar adaptive optics project: status and performance , 2000, Astronomical Telescopes and Instrumentation.

[139]  P. Baudoz,et al.  High-contrast imaging in polychromatic light with the self-coherent camera , 2014, 1402.5914.

[140]  Laird M Close,et al.  Astronomical demonstration of an optical vortex coronagraph. , 2008, Optics express.

[141]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[142]  C. Aime,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. II. THEORETICAL PROPERTIES AND APPLICATION TO EXTREMELY LARGE TELESCOPES , 2009 .

[143]  Johanan L. Codona,et al.  Imaging extrasolar planets by stellar halo suppression in separately corrected color bands , 2004 .

[144]  Pierre Riaud,et al.  The Four‐Quadrant Phase‐Mask Coronagraph. II. Simulations , 2001 .