What does CloudSat reveal about global land precipitation detection by other spaceborne sensors?

Current orbital land precipitation products have serious shortcomings in detecting light rain and snowfall, the most frequent types of global precipitation. The missed precipitation is then propagated into the merged precipitation products that are widely used. Precipitation characteristics such as frequency and intensity and their regional distribution are expected to change in a warming climate. It is important to accurately capture those characteristics to understand and model the current state of the Earth's climate and predict future changes. In this work, the precipitation detection performance of a suite of precipitation sensors, commonly used in generating the merged precipitation products, are investigated. The high sensitivity of CloudSat Cloud Profiling Radar (CPR) to liquid and frozen hydrometeors enables superior estimates of light rainfall and snowfall within 80°S–80°N. Three years (2007–2009) of CloudSat precipitation data were collected to construct a climatology reference for guiding our analysis. In addition, auxiliary data such as infrared brightness temperature, surface air temperature, and cloud types were used for a more detailed assessment. The analysis shows that no more than 50% of the tropical (40°S–40°N) precipitation occurrence is captured by the current suite of precipitation measuring sensors. Poleward of 50° latitude, a combination of various factors such as an abundance of light rainfall, snowfall, shallow precipitation-bearing clouds, and frozen surfaces reduces the space-based precipitation detection rate to less than 20%. This shows that for a better understanding of precipitation from space, especially at higher latitudes, there is a critical need to improve current precipitation retrieval techniques and sensors.

[1]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[2]  Thomas T. Wilheit,et al.  Some comments on passive microwave measurement of rain , 1986 .

[3]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[4]  Tristan L'Ecuyer,et al.  A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and theCloudSatCloud Profiling Radar , 2014 .

[5]  Steven L. Mullen,et al.  Spatiotemporal Variability of Hourly Precipitation over the Eastern Contiguous United States from Stage IV Multisensor Analyses , 2008 .

[6]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[7]  Yang Hong,et al.  Intercomparison of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations for a Season of Record Rainfall , 2010 .

[8]  Tristan S. L'Ecuyer,et al.  The Distribution of Rainfall over Oceans from Spaceborne Radars , 2010 .

[9]  Ralph Ferraro,et al.  Status of the TRMM 2A12 Land Precipitation Algorithm , 2010 .

[10]  Chris Kidd,et al.  Satellite Rainfall Estimation Using a Combined Pasive Microwave and Infrared Algorithm. , 2003 .

[11]  Pietro Ceccato,et al.  Evaluating Detection Skills of Satellite Rainfall Estimates over Desert Locust Recession Regions , 2010 .

[12]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[13]  Yudong Tian,et al.  Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications , 2007 .

[14]  K. Trenberth,et al.  Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data , 2007 .

[15]  Yudong Tian,et al.  Real-Time Bias Reduction for Satellite-Based Precipitation Estimates , 2010 .

[16]  Faisal Hossain,et al.  Investigating the similarity of satellite rainfall error metrics as a function of Köppen climate classification , 2012 .

[17]  Mauricio Zambrano-Bigiarini,et al.  Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin , 2013 .

[18]  Guosheng Liu,et al.  Deriving snow cloud characteristics from CloudSat observations , 2008 .

[19]  Faisal Hossain,et al.  A first approach to global runoff simulation using satellite rainfall estimation , 2007 .

[20]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[21]  A. Bodas‐Salcedo,et al.  Dreary state of precipitation in global models , 2010 .

[22]  Tristan S. L'Ecuyer,et al.  The retrieval of warm rain from CloudSat , 2011 .

[23]  Faisal Hossain,et al.  Understanding the Scale Relationships of Uncertainty Propagation of Satellite Rainfall through a Distributed Hydrologic Model , 2010 .

[24]  F. Joseph Turk,et al.  Precipitation from Space: Advancing Earth System Science , 2013 .

[25]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[26]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[27]  G. Stephens,et al.  Controls of Global-Mean Precipitation Increases in Global Warming GCM Experiments , 2008 .

[28]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[29]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[30]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[31]  Kuolin Hsu,et al.  REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates , 2010 .

[32]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[33]  Christian D. Kummerow,et al.  Rainfall Climate Regimes: The Relationship of Regional TRMM Rainfall Biases to the Environment , 2006 .

[34]  Fuzhong Weng,et al.  Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit , 2001 .

[35]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[36]  Kuolin Hsu,et al.  Hydrologic evaluation of satellite precipitation products over a mid-size basin , 2011 .

[37]  Robert J. Kuligowski,et al.  A Self-Calibrating Real-Time GOES Rainfall Algorithm for Short-Term Rainfall Estimates , 2002 .

[38]  Norman C. Grody,et al.  Effects of surface conditions on rain identification using the DMSP‐SSM/I , 1994 .

[39]  Kuolin Hsu,et al.  Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States , 2009 .

[40]  Norman C. Grody,et al.  A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU) , 2003 .

[41]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[42]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[43]  Mekonnen Gebremichael,et al.  Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model , 2011 .

[44]  Y. Hong,et al.  Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System , 2004 .

[45]  P. Xie,et al.  Kalman Filter–Based CMORPH , 2011 .

[46]  J. Schaefer The critical success index as an indicator of Warning skill , 1990 .

[47]  Yudong Tian,et al.  Modeling errors in daily precipitation measurements: Additive or multiplicative? , 2013 .

[48]  Kuolin Hsu,et al.  PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis , 2009 .

[49]  Ali Behrangi,et al.  On the quantification of oceanic rainfall using spaceborne sensors , 2012 .

[50]  Kuolin Hsu,et al.  Evaluating the Utility of Multispectral Information in Delineating the Areal Extent of Precipitation , 2009 .

[51]  Tristan S. L'Ecuyer,et al.  How often does it rain over the global oceans? The perspective from CloudSat , 2009 .

[52]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Arthur Y. Hou,et al.  Estimation of Rain Intensity Spectra over the Continental United States Using Ground Radar-Gauge Measurements , 2012 .

[54]  S. Sorooshian,et al.  Evaluation of satellite-retrieved extreme precipitation rates across the central United States , 2011 .

[55]  David A. Short,et al.  TRMM Radar Observations of Shallow Precipitation over the Tropical Oceans , 2000 .

[56]  Yang Hong,et al.  Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE , 2012 .

[57]  Chuntao Liu,et al.  “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 yr of TRMM Data , 2009 .

[58]  R. Khanbilvardi,et al.  Bias correction of satellite rainfall estimates using a radar-gauge product – a case study in Oklahoma (USA) , 2011 .

[59]  S. Sorooshian,et al.  Daytime Precipitation Estimation Using Bispectral Cloud Classification System , 2010 .

[60]  Ralph Ferraro,et al.  Evaluation and improvement of AMSU precipitation retrievals , 2007 .

[61]  Fuzhong Weng,et al.  Precipitation characteristics over land from the NOAA‐15 AMSU sensor , 2000 .