Investigation on the self-association of an inorganic coordination compound with biological activity (Casiopeína III-ia) in aqueous solution

[1]  F. Cortés‐Guzmán,et al.  The π-back-bonding modulation and its impact in the electronic properties of Cu(II) antineoplastic compounds: an experimental and theoretical study. , 2014, Chemistry.

[2]  A. Firoozabadi,et al.  Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion forces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[3]  E. Hernández-Lemus,et al.  Copper(II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212. , 2013, Journal of inorganic biochemistry.

[4]  D. Some Light-scattering-based analysis of biomolecular interactions , 2013, Biophysical Reviews.

[5]  R. Galindo-Murillo,et al.  Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways , 2013, PloS one.

[6]  V. Moreno,et al.  New achievements on biological aspects of copper complexes Casiopeínas®: interaction with DNA and proteins and anti-Trypanosoma cruzi activity. , 2012, Journal of inorganic biochemistry.

[7]  M. E. Bravo-Gómez,et al.  Genotoxicity of the copper antineoplastic coordination complexes casiopeinas. , 2011, Toxicology in vitro : an international journal published in association with BIBRA.

[8]  R. Miledi,et al.  The metal-coordinated Casiopeína IIIEa induces the petite-like phenotype in Saccharomyces cerevisiae , 2011, BioMetals.

[9]  Gideon Schreiber,et al.  Protein binding specificity versus promiscuity. , 2010, Current opinion in structural biology.

[10]  Carmen Mejía,et al.  Casiopeinas IIgly and IIIia Induce Apoptosis in Medulloblastoma Cells , 2008, Pathology & Oncology Research.

[11]  L. Ruiz-Azuara,et al.  Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo , 2008, BioMetals.

[12]  N. Plant,et al.  Mixed chelate copper complex, Casiopeina IIgly, binds and degrades nucleic acids: a mechanism of cytotoxicity. , 2007, Chemico-biological interactions.

[13]  S. Youngme,et al.  Crystal structures and magnetic properties of two new phosphate-metal complexes: [Cu2(bpy)2(μ,η2-HPO4)(μ, η1-H2PO4)(μ,η2-H2PO4)]n and [Cu4(phen)4(μ3,η2-HPO4)2(μ,η2-H2PO4)2(H2PO4)2](H2O)4 , 2006 .

[14]  S. Youngme,et al.  Synthesis, crystal structure and magnetic properties of an unexpected new coordination Cu(II) compound, containing two different phosphato-bridged dinuclear units; [Cu2(phen)2(μ-H2PO4-O,O′)2(H2PO4)2][Cu2(phen)2(μ-H2PO4-O,O′)(μ-H2PO4-O)(μ-HPO4-O)]2(H2O)9(phen = 1,10-phenanthroline) , 2006 .

[15]  D. Apiyo,et al.  Dissecting homo-heptamer thermodynamics by isothermal titration calorimetry: entropy-driven assembly of co-chaperonin protein 10. , 2005, Biophysical journal.

[16]  S. Youngme,et al.  The coordination chemistry of mono(di-2-pyridylamine) copper(II) complexes with monovalent and divalent oxoanions: crystal structure, spectroscopic and magnetic properties of dinuclear [Cu(L)(μ-H2PO4)(H2PO4)]2 and polynuclear [Cu(L)(μ3-HPO4)]n , 2004 .

[17]  A. Campero,et al.  Structural and reactivity studies on 4,4'-dimethyl-2,2'-bipyridine acetylacetonate copper(II) nitrate (CASIOPEINA III-ia®) with methionine, by UV-visible and EPR techniques , 2004 .

[18]  A. Velázquez‐Campoy,et al.  Isothermal Titration Calorimetry , 2004, Current protocols in cell biology.

[19]  E. Wang,et al.  A novel coordination polymer with double chains structure: hydrothermal syntheses, structures and magnetic properties of [Cu(phen)(H2O)2SO4]n (phen=1,10-phenanthroline) , 2003 .

[20]  E. Rizzarelli,et al.  Functional Mimics of Cu, Zn- Superoxide Dismutase Enzymes , 2003 .

[21]  L. M. Varela,et al.  Self-association of Verapamil in Aqueous Electrolyte Solution , 2001 .

[22]  S. Schreier,et al.  Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. , 2000, Biochimica et biophysica acta.

[23]  J. Hanson,et al.  Preparation and Characterization of a New 3-Dimensional Zirconium Hydrogen Phosphate, τ-Zr(HPO4)2. Determination of the Complete Crystal Structure Combining Synchrotron X-ray Single-Crystal Diffraction and Neutron Powder Diffraction , 1998 .

[24]  R. Haushalter,et al.  Hydrothermal synthesis and crystal and molecular structure of a binuclear dioxovanadium(V) species exhibiting a bridging HPO42− ligand, [(VO2)2(HPO4)(2,2′-bipy)2]·H2O , 1997 .

[25]  Chengyue Zhu,et al.  Determination of solution aggregation using solubility, conductivity, calorimetry, and pH measurements , 1996 .

[26]  G. Ferrer-Sueta,et al.  Aqua(glycinato)(3,4,7,8-tetramethyl-1,10-phenanthroline)copper(II) nitrate , 1995 .

[27]  D. Causon,et al.  Ultrasonic relaxations associated with aggregation in drugs , 1981 .

[28]  K. J. Mysels,et al.  Counterion Specificity in the Formation of Ionic Micelles - Size, Hydration, and Hydrophobic Bonding Effects , 1967 .