Real-time appearance-based Monte Carlo localization

Abstract A new technique for vision processing is presented which lets a mobile robot equipped with an omnidirectional camera perform appearance-based global localization in real time. The technique is applied directly to the omnidirectional camera images, producing low-dimensional rotation invariant feature vectors without any training or set-up phase. Using the feature vectors, particle filters can accurately estimate the location of a continuously moving real robot, processing 5000 simultaneous localization hypotheses on-line. Estimated body positions overlap the actual ones in over 95% of the time steps. The feature vectors show a graceful degradation against increasing levels of simulated noise and occlusion.

[1]  Nobuyuki Otsu,et al.  Facial expression recognition using Fisher weight maps , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[2]  Hong Zhang,et al.  Cylindrical panoramic image-based model for robot localization , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[3]  Roland Siegwart,et al.  Deriving and matching image fingerprint sequences for mobile robot localization , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Bruce A. MacDonald,et al.  Natural landmark based localisation system using panoramic images , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[5]  Shlomo Argamon-Engelson Using image signatures for place recognition , 1998 .

[6]  Tsuhan Chen,et al.  Eigenspace updating for non-stationary process and its application to face recognition , 2003, Pattern Recognit..

[7]  Naokazu Yokoya,et al.  Memory-based self-localization using omnidirectional images , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[8]  Ales Leonardis,et al.  Robust localization using an omnidirectional appearance-based subspace model of environment , 2003, Robotics Auton. Syst..

[9]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[10]  Horst-Michael Groß,et al.  Vision-based Monte Carlo self-localization for a mobile service robot acting as shopping assistant in a home store , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[12]  R. Darnell Translation , 1873, The Indian medical gazette.

[13]  Carrick Detweiler,et al.  Scale-Space Features in 1D Omnidirectional Images , 2004 .

[14]  Lin Padgham,et al.  Techniques for Obtaining Robust, Real-Time, Colour-Based Vision for Robotics , 1999, RoboCup.

[15]  Shree K. Nayar,et al.  Catadioptric omnidirectional camera , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Horst Bischof,et al.  Illumination Insensitive Robot Self-Localization Using Panoramic Eigenspaces , 2004, RoboCup.

[17]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[18]  Kazuo Kyuma,et al.  Face Recognition System Using Local Autocorrelations and Multiscale Integration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Roland Siegwart,et al.  Environmental modeling with fingerprint sequences for topological global localization , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Ben J. A. Kröse,et al.  Auxiliary particle filter robot localization from high-dimensional sensor observations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[21]  Emanuele Menegatti,et al.  Testing omnidirectional vision-based Monte Carlo localization under occlusion , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[22]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[23]  赤穂 昭太郎 Translation,Scale and Rotation Invariant Features Based on High-Order Autocorrelations , 1993 .

[24]  Masumi Ishikawa,et al.  Memory-Based Location Estimation and Navigation Using Bayesian Estimation , 1998, ICONIP.

[25]  Eun-Jung Holden,et al.  Visual Speech Recognition Using Cepstral Images , 2000 .

[26]  A. Leonardis,et al.  Robust localization using eigenspace of spinning-images , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[27]  Wolfram Burgard,et al.  Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM , 1999, ICML.

[28]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Hans P. Moravec Robot spatial perception by stereoscopic vision and 3D evidence grids , 1996 .

[30]  Takio Kurita,et al.  Scale invariant face detection method using higher-order local autocorrelation features extracted from log-polar image , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[31]  Emanuele Menegatti,et al.  Image-based Monte Carlo localisation with omnidirectional images , 2004, Robotics Auton. Syst..

[32]  Emanuele Menegatti,et al.  Image-Based Monte-Carlo Localisation without a Map , 2003, AI*IA.

[33]  Hanns Schulz-Mirbach,et al.  Invariant Features for Gray Scale Images , 1995, DAGM-Symposium.

[34]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[35]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[36]  Václav Hlavác,et al.  Zero Phase Representation of Panoramic Images for Image Vased Localization , 1999, CAIP.

[37]  Masayuki Inaba,et al.  Visual navigation using view-sequenced route representation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[38]  Shotaro Akaho Translation, Scale and Rotation Invariant Features Based on High-Order Autocorrelations , 1993 .

[39]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[40]  Tieniu Tan,et al.  Mobile robot self-localization based on global visual appearance features , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[41]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[42]  Masumi Ishikawa,et al.  Rotation invariant features from omnidirectional camera images using a polar higher-order local autocorrelation feature extractor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[43]  Darius Burschka,et al.  Scene classification from dense disparity maps in indoor environments , 2002, Object recognition supported by user interaction for service robots.

[44]  Takio Kurita,et al.  A New Scheme for Practical Flexible and Intelligent Vision Systems , 1988, MVA.

[45]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[46]  J. Gaspar,et al.  Omni-directional vision for robot navigation , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[47]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[48]  José Santos-Victor,et al.  Vision-based navigation and environmental representations with an omnidirectional camera , 2000, IEEE Trans. Robotics Autom..

[49]  R. Cassinis,et al.  Using colour information in an omnidirectional perception system for autonomous robot localization , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[50]  Joachim Hertzberg,et al.  Robust localization using context in omnidirectional imaging , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[51]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[52]  Ales Leonardis,et al.  Mobile robot localization using an incremental eigenspace model , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[53]  Ben J. A. Krse,et al.  On the Use of Disparity Maps for robust Robot Localization under Different Illumination Conditions , 2003 .

[54]  Hiroshi Ishiguro,et al.  Image-based memory of environment , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[55]  Hans Burkhardt,et al.  Invariant Feature Histograms for Texture Classification , 1998 .

[56]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[57]  Horst Bischof,et al.  Mobile robot localization under varying illumination , 2002, Object recognition supported by user interaction for service robots.

[58]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[59]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[60]  Nobuyuki Otsu,et al.  Gesture recognition using auto-regressive coefficients of higher-order local auto-correlation features , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[61]  Shmuel Peleg,et al.  Panoramic mosaics by manifold projection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Verena V. Hafner,et al.  Learning Places in Newly Explored Environments , 2000 .