Viktor Solomonovich Ryaben'kii and his school
暂无分享,去创建一个
Boris N. Chetverushkin | V. T. Zhukov | A. S. Kholodov | V. I. Turchaninov | I. L. Sofronov | S. K. Godunov | S. Godunov | Y. Epshteyn | I. Sofronov | S. Tsynkov | B. Chetverushkin | V. Zhukov | M I Lazarev | Semyon Tsynkov | Ye Yu Epshteyn | V. Turchaninov | M. I. Lazarev | S. K. G. V. T. Z. M. I. L. I. L. S. Epshteyn
[1] R. D. Richtmyer,et al. Survey of the stability of linear finite difference equations , 1956 .
[2] Semyon Tsynkov,et al. Quasi-Lacunae of Maxwell's Equations , 2011, SIAM J. Appl. Math..
[3] S. K. Godunov,et al. Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics , 2011 .
[4] Semyon Tsynkov,et al. External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics , 1999, SIAM J. Sci. Comput..
[5] Uri Shumlak,et al. Modeling open boundaries in dissipative MHD simulation , 2012, J. Comput. Phys..
[6] Semyon Tsynkov,et al. Active Control of Sound for Composite Regions , 2007, SIAM J. Appl. Math..
[7] S. Godunov,et al. Difference Schemes: An Introduction to the Underlying Theory , 1987 .
[8] Jan Nordström,et al. Global artificial boundary conditions for computation of external flows with jets , 2000 .
[9] Semyon Tsynkov,et al. The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes , 2012, Journal of Scientific Computing.
[10] Semyon Tsynkov,et al. Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .
[11] N. A. Zaitsev,et al. Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer , 2010, J. Comput. Appl. Math..
[12] V. Ryaben'kii,et al. Long-time numerical computation of wave-type solutions driven by moving sources ? ? This work was su , 2001 .
[13] V. S. Ryaben'kii. Finite-difference shielding problem , 1995 .
[14] Matthias Ehrhardt,et al. Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .
[15] Semyon Tsynkov,et al. Active Shielding and Control of Noise , 2001, SIAM J. Appl. Math..
[16] A numerical iterative method for solving regular elliptic problems , 1990 .
[17] Ivan Sofronov,et al. Time-Accurate Inlet and Outlet Conditions for Unsteady Transonic Channel Flow , 2002 .
[18] Semyon Tsynkov,et al. Artificial boundary conditions for the numerical solution of external viscous flow problems , 1995 .
[19] Semyon Tsynkov,et al. Optimization of Acoustic Source Strength in the Problems of Active Noise Control , 2003, SIAM J. Appl. Math..
[20] R. P. Fedorenko. A relaxation method for solving elliptic difference equations , 1962 .
[21] V. Ryaben'kii. Use of weak noise for real-time control of strong noise suppression in a shielded subdomain , 2010 .
[22] Semyon Tsynkov,et al. On the application of lacunae-based methods to Maxwell's equations , 2004 .
[23] S. Utyuzhnikov,et al. The problem of active noise shielding in composite domains , 2006 .
[24] D. Kamenetskii. Difference generalized Poincaré-Steklov operators and potentials with densities from a jump space , 1999 .
[25] V. I. Turchaninov,et al. Algorithm composition scheme for problems in composite domains based on the difference potential method , 2006 .
[26] Виктор Соломонович Рябенький. Идея использования слабого шума для управления подавлением сильного шума в экранируемой подобласти в реальном времени , 2009 .
[27] Viktor S. Ryaben’kii,et al. Boundary equations with projections , 1985 .
[28] V. Ryaben'kii. Mathematical model of devices used to suppress external noise in a subregion of space , 2013 .
[29] V. Ryaben'kii. Synchronous exploration for the control of real-time external noise suppression in a three-dimensional subdomain , 2011 .
[30] V. Ryaben'kii. Certain problems of the theory of difference boundary value problems , 1970 .
[31] Veer N. Vatsa,et al. Improved Treatment of External Boundary Conditions for Three-Dimensional Flow Computations , 1998 .
[32] Semyon Tsynkov,et al. Optimization of power in the problems of active control of sound , 2004, Math. Comput. Simul..
[33] V. Ryaben'kii. Key information to control solutions of linear difference schemes in composite domains , 2012 .
[34] V. Ryaben'kii. Real-time noise suppression in a three-dimensional protected subdomain as based on information from synchronous noise exploration , 2011 .
[35] Semyon Tsynkov,et al. A Theoretical Introduction to Numerical Analysis , 2006 .
[36] Semyon Tsynkov,et al. Numerical Simulation of Time-Harmonic Waves in Inhomogeneous Media using Compact High Order Schemes , 2011 .
[37] V. Ryaben'kii. Faithful transfer of difference boundary conditions , 1990 .
[38] Semyon Tsynkov,et al. High order numerical simulation of the transmission and scattering of waves using the method of difference potentials , 2013, J. Comput. Phys..
[39] Semyon Tsynkov,et al. Active control of sound with variable degree of cancellation , 2009, Appl. Math. Lett..
[40] H. Lim,et al. An experimental validation of the active noise control methodology based on difference potentials , 2009 .
[41] Andreas Dedner,et al. Transparent boundary conditions for MHD simulations in stratified atmospheres , 2001 .
[42] Semyon Tsynkov,et al. Lacunae based stabilization of PMLs , 2008, J. Comput. Phys..
[43] V. Ryaben'kii,et al. Model of real-time active noise shielding of a given subdomain subject to external noise sources , 2011 .
[44] An Application of Nonlocal External Conditions to Viscous Flow Computations , 1995 .
[45] Yekaterina Epshteyn,et al. High-order accurate difference potentials methods for parabolic problems , 2015 .
[46] Eli Turkel,et al. External flow computations using global boundary conditions , 1996 .
[47] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[48] Semyon Tsynkov,et al. A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions , 2013, SIAM J. Sci. Comput..
[49] Semyon Tsynkov,et al. Artificial boundary conditions for the numerical simulation of unsteady acoustic waves , 2003 .
[50] V. I. Turchaninov,et al. The algorithm of the method of difference potentials , 1986 .
[51] Yekaterina Epshteyn,et al. High-order difference potentials methods for 1D elliptic type models , 2015 .
[52] Yekaterina Epshteyn,et al. Algorithms composition approach based on difference potentials method for parabolic problems , 2014 .
[53] Semyon Tsynkov,et al. A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell's equations , 2012, J. Comput. Phys..
[54] V S Ryaben'kii,et al. SPECTRAL STABILITY CRITERIA FOR BOUNDARY-VALUE PROBLEMS FOR NON-SELF-ADJOINT DIFFERENCE EQUATIONS , 1963 .
[55] Semyon Tsynkov,et al. Inverse source problem and active shielding for composite domains , 2007, Appl. Math. Lett..
[56] E. Turkel,et al. Computation of singular solutions to the Helmholtz equation with high order accuracy , 2015 .
[57] Semyon Tsynkov,et al. Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number , 2013, J. Comput. Phys..
[58] Semyon Tsynkov,et al. On the Definition of Surface Potentials for Finite-Difference Operators , 2003, J. Sci. Comput..
[59] Еремин Михаил Анатольевич,et al. Численные модели межзвездной и межгалактической сред: неравновесная химическая кинетика в газовой динамике , 2014 .
[60] I. Sofronov. Differential part of transparent boundary conditions for certain hyperbolic systems of second-order equations , 2009 .
[61] D. Kamenetskii. Difference potentials and parameterization of solutions to homogeneous difference equations , 1998 .