Viktor Solomonovich Ryaben'kii and his school

[1]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[2]  Semyon Tsynkov,et al.  Quasi-Lacunae of Maxwell's Equations , 2011, SIAM J. Appl. Math..

[3]  S. K. Godunov,et al.  Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics , 2011 .

[4]  Semyon Tsynkov,et al.  External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics , 1999, SIAM J. Sci. Comput..

[5]  Uri Shumlak,et al.  Modeling open boundaries in dissipative MHD simulation , 2012, J. Comput. Phys..

[6]  Semyon Tsynkov,et al.  Active Control of Sound for Composite Regions , 2007, SIAM J. Appl. Math..

[7]  S. Godunov,et al.  Difference Schemes: An Introduction to the Underlying Theory , 1987 .

[8]  Jan Nordström,et al.  Global artificial boundary conditions for computation of external flows with jets , 2000 .

[9]  Semyon Tsynkov,et al.  The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes , 2012, Journal of Scientific Computing.

[10]  Semyon Tsynkov,et al.  Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .

[11]  N. A. Zaitsev,et al.  Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer , 2010, J. Comput. Appl. Math..

[12]  V. Ryaben'kii,et al.  Long-time numerical computation of wave-type solutions driven by moving sources ? ? This work was su , 2001 .

[13]  V. S. Ryaben'kii Finite-difference shielding problem , 1995 .

[14]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .

[15]  Semyon Tsynkov,et al.  Active Shielding and Control of Noise , 2001, SIAM J. Appl. Math..

[16]  A numerical iterative method for solving regular elliptic problems , 1990 .

[17]  Ivan Sofronov,et al.  Time-Accurate Inlet and Outlet Conditions for Unsteady Transonic Channel Flow , 2002 .

[18]  Semyon Tsynkov,et al.  Artificial boundary conditions for the numerical solution of external viscous flow problems , 1995 .

[19]  Semyon Tsynkov,et al.  Optimization of Acoustic Source Strength in the Problems of Active Noise Control , 2003, SIAM J. Appl. Math..

[20]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[21]  V. Ryaben'kii Use of weak noise for real-time control of strong noise suppression in a shielded subdomain , 2010 .

[22]  Semyon Tsynkov,et al.  On the application of lacunae-based methods to Maxwell's equations , 2004 .

[23]  S. Utyuzhnikov,et al.  The problem of active noise shielding in composite domains , 2006 .

[24]  D. Kamenetskii Difference generalized Poincaré-Steklov operators and potentials with densities from a jump space , 1999 .

[25]  V. I. Turchaninov,et al.  Algorithm composition scheme for problems in composite domains based on the difference potential method , 2006 .

[26]  Виктор Соломонович Рябенький Идея использования слабого шума для управления подавлением сильного шума в экранируемой подобласти в реальном времени , 2009 .

[27]  Viktor S. Ryaben’kii,et al.  Boundary equations with projections , 1985 .

[28]  V. Ryaben'kii Mathematical model of devices used to suppress external noise in a subregion of space , 2013 .

[29]  V. Ryaben'kii Synchronous exploration for the control of real-time external noise suppression in a three-dimensional subdomain , 2011 .

[30]  V. Ryaben'kii Certain problems of the theory of difference boundary value problems , 1970 .

[31]  Veer N. Vatsa,et al.  Improved Treatment of External Boundary Conditions for Three-Dimensional Flow Computations , 1998 .

[32]  Semyon Tsynkov,et al.  Optimization of power in the problems of active control of sound , 2004, Math. Comput. Simul..

[33]  V. Ryaben'kii Key information to control solutions of linear difference schemes in composite domains , 2012 .

[34]  V. Ryaben'kii Real-time noise suppression in a three-dimensional protected subdomain as based on information from synchronous noise exploration , 2011 .

[35]  Semyon Tsynkov,et al.  A Theoretical Introduction to Numerical Analysis , 2006 .

[36]  Semyon Tsynkov,et al.  Numerical Simulation of Time-Harmonic Waves in Inhomogeneous Media using Compact High Order Schemes , 2011 .

[37]  V. Ryaben'kii Faithful transfer of difference boundary conditions , 1990 .

[38]  Semyon Tsynkov,et al.  High order numerical simulation of the transmission and scattering of waves using the method of difference potentials , 2013, J. Comput. Phys..

[39]  Semyon Tsynkov,et al.  Active control of sound with variable degree of cancellation , 2009, Appl. Math. Lett..

[40]  H. Lim,et al.  An experimental validation of the active noise control methodology based on difference potentials , 2009 .

[41]  Andreas Dedner,et al.  Transparent boundary conditions for MHD simulations in stratified atmospheres , 2001 .

[42]  Semyon Tsynkov,et al.  Lacunae based stabilization of PMLs , 2008, J. Comput. Phys..

[43]  V. Ryaben'kii,et al.  Model of real-time active noise shielding of a given subdomain subject to external noise sources , 2011 .

[44]  An Application of Nonlocal External Conditions to Viscous Flow Computations , 1995 .

[45]  Yekaterina Epshteyn,et al.  High-order accurate difference potentials methods for parabolic problems , 2015 .

[46]  Eli Turkel,et al.  External flow computations using global boundary conditions , 1996 .

[47]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[48]  Semyon Tsynkov,et al.  A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions , 2013, SIAM J. Sci. Comput..

[49]  Semyon Tsynkov,et al.  Artificial boundary conditions for the numerical simulation of unsteady acoustic waves , 2003 .

[50]  V. I. Turchaninov,et al.  The algorithm of the method of difference potentials , 1986 .

[51]  Yekaterina Epshteyn,et al.  High-order difference potentials methods for 1D elliptic type models , 2015 .

[52]  Yekaterina Epshteyn,et al.  Algorithms composition approach based on difference potentials method for parabolic problems , 2014 .

[53]  Semyon Tsynkov,et al.  A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell's equations , 2012, J. Comput. Phys..

[54]  V S Ryaben'kii,et al.  SPECTRAL STABILITY CRITERIA FOR BOUNDARY-VALUE PROBLEMS FOR NON-SELF-ADJOINT DIFFERENCE EQUATIONS , 1963 .

[55]  Semyon Tsynkov,et al.  Inverse source problem and active shielding for composite domains , 2007, Appl. Math. Lett..

[56]  E. Turkel,et al.  Computation of singular solutions to the Helmholtz equation with high order accuracy , 2015 .

[57]  Semyon Tsynkov,et al.  Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number , 2013, J. Comput. Phys..

[58]  Semyon Tsynkov,et al.  On the Definition of Surface Potentials for Finite-Difference Operators , 2003, J. Sci. Comput..

[59]  Еремин Михаил Анатольевич,et al.  Численные модели межзвездной и межгалактической сред: неравновесная химическая кинетика в газовой динамике , 2014 .

[60]  I. Sofronov Differential part of transparent boundary conditions for certain hyperbolic systems of second-order equations , 2009 .

[61]  D. Kamenetskii Difference potentials and parameterization of solutions to homogeneous difference equations , 1998 .