Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food

[1]  M. Hornef,et al.  Programmed and environmental determinants driving neonatal mucosal immune development. , 2023, Immunity.

[2]  Nicholas D. Youngblut,et al.  Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5 , 2023, Science immunology.

[3]  J. Hubbell,et al.  Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles , 2022, Nature Biomedical Engineering.

[4]  H. Ogata,et al.  Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios+ Tregs in the gut. , 2022, Cell reports.

[5]  R. Pawankar,et al.  Food allergy across the globe. , 2021, The Journal of allergy and clinical immunology.

[6]  K. Nadeau,et al.  Early intervention and prevention of allergic diseases , 2021, Allergy.

[7]  B. Stockinger,et al.  AHR in the intestinal microenvironment: safeguarding barrier function , 2021, Nature Reviews Gastroenterology & Hepatology.

[8]  K. Nadeau,et al.  Fecal microbiome and metabolome differ in healthy and food-allergic twins. , 2021, The Journal of clinical investigation.

[9]  Yan Wang,et al.  Fucoidan antagonizes diet-induced obesity and inflammation in mice , 2020, Journal of biomedical research.

[10]  Narmada Thanki,et al.  RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation , 2020, Nucleic Acids Res..

[11]  P. Turner,et al.  Advancing food allergy through epidemiology: understanding and addressing disparities in food allergy management and outcomes. , 2020, The journal of allergy and clinical immunology. In practice.

[12]  P. Reeves,et al.  The Remarkable Dual-Level Diversity of Prokaryotic Flagellins , 2020, mSystems.

[13]  G. Eberl,et al.  Imprinting of the immune system by the microbiota early in life , 2020, Mucosal Immunology.

[14]  A. Awasthi,et al.  DeSUMOylase SENP7-Mediated Epithelial Signaling Triggers Intestinal Inflammation via Expansion of Gamma-Delta T Cells. , 2019, Cell reports.

[15]  W. Garrett,et al.  Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity. , 2019, Immunity.

[16]  Rick L. Stevens,et al.  The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities , 2019, Nucleic Acids Res..

[17]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[18]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[19]  T. Minamino,et al.  Flagella-Driven Motility of Bacteria , 2019, Biomolecules.

[20]  D. Voehringer,et al.  Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains , 2019, PLoS biology.

[21]  C. Nagler,et al.  The Microbiome and Food Allergy. , 2019, Annual review of immunology.

[22]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[23]  H. Glatt,et al.  Interleukin-22 protects intestinal stem cells against genotoxic stress , 2019, Nature.

[24]  D. Antonopoulos,et al.  Healthy infants harbor intestinal bacteria that protect against food allergy , 2018, Nature Medicine.

[25]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[26]  G. Barton,et al.  A Map of Toll‐like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type‐Specific, and Temporal Patterns , 2018, Immunity.

[27]  Robert D. Finn,et al.  HMMER web server: 2018 update , 2018, Nucleic Acids Res..

[28]  B. Osborne,et al.  Notch signaling regulates the responses of lipopolysaccharide-stimulated macrophages in the presence of immune complexes , 2018, PloS one.

[29]  Michael Y. Gerner,et al.  Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism , 2018, Nature.

[30]  Liang Zhou,et al.  The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. , 2017, Cell reports.

[31]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[32]  W. Hardt,et al.  The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea. , 2017, Cell host & microbe.

[33]  R. Jenq,et al.  Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration , 2015, Nature.

[34]  L. Boon,et al.  Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage , 2015, The Journal of experimental medicine.

[35]  F. Powrie,et al.  CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23 , 2015, Mucosal Immunology.

[36]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[37]  Fangfang Xia,et al.  RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes , 2015, Scientific Reports.

[38]  R. Ley,et al.  Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. , 2014, Gastroenterology.

[39]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[40]  B. Becher,et al.  Innate lymphoid cells regulate intestinal epithelial cell glycosylation , 2014, Science.

[41]  Rustem F. Ismagilov,et al.  Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness , 2014, Nature.

[42]  D. Antonopoulos,et al.  Commensal bacteria protect against food allergen sensitization , 2014, Proceedings of the National Academy of Sciences.

[43]  Sandhya Kortagere,et al.  Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll‐like Receptor 4 , 2014, Immunity.

[44]  Emily R. Miraldi,et al.  CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22 , 2014, The Journal of experimental medicine.

[45]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[46]  J. Tiedje,et al.  Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data , 2014, mBio.

[47]  L. T. Angenent,et al.  Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. , 2013, Cell host & microbe.

[48]  Liang Zhou,et al.  Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. , 2013, Immunity.

[49]  A. De Luca,et al.  Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. , 2013, Immunity.

[50]  Ansuman T. Satpathy,et al.  Notch2-dependent classical dendritic cells orchestrate intestinal immunity against attaching and effacing bacterial pathogens , 2013, Nature Immunology.

[51]  H. Flint,et al.  Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans , 2013, PloS one.

[52]  M. Oukka,et al.  IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism , 2013, Mucosal Immunology.

[53]  W. Karpus,et al.  TLR1-induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica , 2013, Mucosal Immunology.

[54]  S. Devkota,et al.  Lymphotoxin regulates commensal responses to enable diet-induced obesity , 2012, Nature Immunology.

[55]  F. Bushman,et al.  Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria , 2012, Science.

[56]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[57]  T. Hohl,et al.  Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. , 2012, Immunity.

[58]  Liang Zhou,et al.  The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. , 2012, Immunity.

[59]  E. Hobeika,et al.  Natural Aryl Hydrocarbon Receptor Ligands Control Organogenesis of Intestinal Lymphoid Follicles , 2011, Science.

[60]  Huimin Xie,et al.  T Cell Factor 1 Regulates Thymocyte Survival via a RORγt-Dependent Pathway , 2011, The Journal of Immunology.

[61]  C. Garlanda,et al.  AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch , 2011, Nature Immunology.

[62]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[63]  Richard A Flavell,et al.  Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. , 2010, The Journal of infectious diseases.

[64]  S. Snapper,et al.  Toll-like receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10-deficient mice. , 2009, Gastroenterology.

[65]  J. Austin,et al.  Motility and Flagellar Glycosylation in Clostridium difficile , 2009, Journal of bacteriology.

[66]  T. van de Wiele,et al.  Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability , 2009, Gut.

[67]  A. Ponce,et al.  Production and characterization of pure Clostridium spore suspensions , 2009, Journal of applied microbiology.

[68]  A. Murphy,et al.  Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. , 2008, Immunity.

[69]  R. Flavell,et al.  IL‐22 and inflammation: Leukin' through a glass onion , 2008, European journal of immunology.

[70]  A. DeFranco,et al.  Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. , 2008, Immunity.

[71]  U. Stenzel,et al.  PatMaN: rapid alignment of short sequences to large databases , 2008, Bioinform..

[72]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[73]  R. Xavier,et al.  IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. , 2008, The Journal of clinical investigation.

[74]  B. Becher,et al.  IL-22 Is Expressed by Th17 Cells in an IL-23-Dependent Fashion, but Not Required for the Development of Autoimmune Encephalomyelitis1 , 2007, The Journal of Immunology.

[75]  B. Reizis,et al.  Notch–RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen , 2007, The Journal of experimental medicine.

[76]  R. Flavell,et al.  Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria , 2006, Proceedings of the National Academy of Sciences.

[77]  C. Bradfield,et al.  Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Littman,et al.  Thymic Origin of Intestinal αß T Cells Revealed by Fate Mapping of RORγt+ Cells , 2004, Science.

[79]  H. Shi,et al.  Toll-Like Receptor 4 Signaling by Intestinal Microbes Influences Susceptibility to Food Allergy1 , 2004, The Journal of Immunology.

[80]  A. Aderem,et al.  Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility , 2003, Nature Immunology.

[81]  S. Akira,et al.  The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 , 2001, Nature.

[82]  M. Bevan,et al.  Down-Regulation of the Orphan Nuclear Receptor RORγt Is Essential for T Lymphocyte Maturation1 , 2000, The Journal of Immunology.

[83]  M. Power,et al.  Structural and antigenic characteristics of Campylobacter coli FlaA flagellin , 1994, Journal of bacteriology.

[84]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[85]  S. Magness,et al.  Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. , 2012, Methods in molecular biology.

[86]  D. Littman,et al.  Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. , 2004, Science.

[87]  S. Louie Toll-Like Receptor 4 Signaling by Intestinal Microbes Influences Susceptibility to Food Allergy , 2004 .