A new point process transition density model for space-time event prediction

A new point process transition density model is proposed based on the theory of point patterns for predicting the likelihood of occurrence of spatial-temporal random events. The model provides a framework for discovering and incorporating event initiation preferences in terms of clusters of feature values. Components of the proposed model are specified taking into account additional behavioral assumptions such as the "journey to event" and "lingering period to resume act." Various feature selection techniques are presented in conjunction with the proposed model. Extending knowledge discovery into feature space allows for extrapolation beyond spatial or temporal continuity and is shown to be a major advantage of our model over traditional approaches. We examine the proposed model primarily in the context of predicting criminal events in space and time.

[1]  P. Pfeifer,et al.  A Three-Stage Iterative Procedure for Space-Time Modeling , 1980 .

[2]  J. Oeppen The identification of regional forecasting models using space-time correlation , 1975 .

[3]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[4]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[5]  O. Newman,et al.  Defensible Space; Crime Prevention Through Urban Design. , 1973 .

[6]  Thomas Molumby,et al.  Patterns of Crime in a University Housing Project , 1976 .

[7]  Karen Byth,et al.  The statistical analysis of spatial point patterns , 1980 .

[8]  N. S. Asaithambi Numerical analysis , 1995 .

[9]  David S. Stoffer,et al.  Estimation and Identification of Space-Time ARMAX Models in the Presence of Missing Data , 1986 .

[10]  Donald E. Brown,et al.  Spatial-temporal event prediction: a new model , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[11]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[12]  Woodrow W. Nichols,et al.  Urban Structure and Criminal Mobility , 1976 .

[13]  P. Pfeifer,et al.  Identification and Interpretation of First Order Space-Time ARMA Models , 1980 .

[14]  Lin Liu,et al.  Determining the similarity of point patterns using internal, nonmetric representations: preliminary results , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[15]  A. Rényi On Measures of Entropy and Information , 1961 .

[16]  D. N. Geary Mixture Models: Inference and Applications to Clustering , 1989 .

[17]  J. Simonoff Multivariate Density Estimation , 1996 .

[18]  Monica A. Walker,et al.  The urban criminal: A study in Sheffield , 1976 .

[19]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[20]  Manoranjan Dash,et al.  Dimensionality reduction of unsupervised data , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[21]  H. P. Friedman,et al.  On Some Invariant Criteria for Grouping Data , 1967 .

[22]  B. Everitt,et al.  Finite Mixture Distributions , 1981 .

[23]  M. Ben-Bassat,et al.  Renyi's entropy and the probability of error , 1978, IEEE Trans. Inf. Theory.

[24]  Menachem Amir Patterns in Forcible Rape , 1971 .

[25]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[26]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[27]  Leo A. Aroian Time series in m-dimensions definition, problems and prospects , 1980 .

[28]  B. Abraham The exact likelihood function for a space time model , 1983 .

[29]  D. Kim Rossmo,et al.  A methodological model , 1993 .

[30]  Brian Everitt,et al.  An Introduction to Latent Variable Models , 1984 .

[31]  Pip Forer ELEMENTS OF SPATIAL STRUCTURE: A QUANTITATIVE APPROACH , 1977 .

[32]  Patricia L. Brantingham,et al.  THE SPATIAL PATTERNING OF BURGLARY , 1975 .

[33]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[34]  Thomas Fiksel Simple Spatial-Temporal Models for Sequences of Geological Events , 1984, J. Inf. Process. Cybern..

[35]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[36]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[37]  R. Mojena,et al.  Hierarchical Grouping Methods and Stopping Rules: An Evaluation , 1977, Comput. J..

[38]  Ralph Birkenhead Similarity between categorisations , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[39]  H. A. Scarr,et al.  Patterns of burglary , 1973 .