A multivariate fast discrete Walsh transform with an application to function interpolation

For high dimensional problems, such as approximation and integration, one cannot afford to sample on a grid because of the curse of dimensionality. An attractive alternative is to sample on a low discrepancy set, such as an integration lattice or a digital net. This article introduces a multivariate fast discrete Walsh transform for data sampled on a digital net that requires only O(N log N) operations, where N is the number of data points. This algorithm and its inverse are digital analogs of multivariate fast Fourier transforms. This fast discrete Walsh transform and its inverse may be used to approximate the Walsh coefficients of a function and then construct a spline interpolant of the function. This interpolant may then be used to estimate the function's effective dimension, an important concept in the theory of numerical multivariate integration. Numerical results for various functions are presented.

[1]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[2]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[3]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[4]  H. Niederreiter,et al.  Duality for digital nets and its applications , 2001 .

[5]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[6]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[7]  Fred J. Hickernell,et al.  Randomized Halton sequences , 2000 .

[8]  Fred J. Hickernell,et al.  Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .

[9]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[10]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[11]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[12]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[13]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[14]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[15]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[16]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[17]  G. Wahba Spline models for observational data , 1990 .

[18]  Ian H. Sloan,et al.  Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..

[19]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[20]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[21]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[22]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[23]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[24]  F. J. Hickernell,et al.  Trigonometric spectral collocation methods on lattices , 2003 .

[25]  Harald Niederreiter,et al.  Low-discrepancy point sets , 1986 .

[26]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[27]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[28]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.