A multivariate fast discrete Walsh transform with an application to function interpolation
暂无分享,去创建一个
[1] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[2] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[3] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[4] H. Niederreiter,et al. Duality for digital nets and its applications , 2001 .
[5] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[6] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[7] Fred J. Hickernell,et al. Randomized Halton sequences , 2000 .
[8] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .
[9] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[10] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[11] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[12] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[13] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[14] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[15] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[16] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[17] G. Wahba. Spline models for observational data , 1990 .
[18] Ian H. Sloan,et al. Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..
[19] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[20] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[21] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[22] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[23] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[24] F. J. Hickernell,et al. Trigonometric spectral collocation methods on lattices , 2003 .
[25] Harald Niederreiter,et al. Low-discrepancy point sets , 1986 .
[26] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[27] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[28] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.