Probability Theory I
暂无分享,去创建一个
These notes cover the basic definitions of discrete probability theory, and then present some results including Bayes' rule, inclusion-exclusion formula, Chebyshev's inequality, and the weak law of large numbers. 1 Sample spaces and events To treat probability rigorously, we define a sample space S whose elements are the possible outcomes of some process or experiment. For example, the sample space might be the outcomes of the roll of a die, or flips of a coin. To each element x of the sample space, we assign a probability, which will be a non-negative number between 0 and 1, which we will denote by p(x). We require that x∈S p(x) = 1, so the total probability of the elements of our sample space is 1. What this means intuitively is that when we perform our process, exactly one of the things in our sample space will happen. Example. The sample space could be S = {a, b, c}, and the probabilities could be p(a) = 1/2, p(b) = 1/3, p(c) = 1/6. If all elements of our sample space have equal probabilities, we call this the uniform probability distribution on our sample space. For example, if our sample space was the outcomes of a die roll, the sample space could be denoted S = {x 1 , x 2 ,. .. , x 6 }, where the event x i correspond to rolling i. The uniform distribution, in which every outcome x i has probability 1/6 describes the situation for a fair die. Similarly, if we consider tossing a fair coin, the outcomes would be H (heads) and T (tails), each with probability 1/2. In this situation we have the uniform probability distribution on the sample space S = {H, T }. We define an event A to be a subset of the sample space. For example, in the roll of a die, if the event A was rolling an even number, then A = {x 2 , x 4 , x 6 }. The probability of an event A, denoted by P(A), is the sum of the probabilities of the corresponding elements in the sample space. For rolling an even number, we have P(A) = p(x 2) + p(x 4) + p(x 6) = 1 2 Given an event A of our sample space, there is a complementary event which consists of all points in our sample space that are not …