Horizontal gene transfer constrains the timing of methanogen evolution

Microbial methanogenesis may have been a major component of Earth’s carbon cycle during the Archaean eon, generating a methane greenhouse that increased global temperatures enough for a liquid hydrosphere, despite the Sun’s lower luminosity at the time. Evaluation of potential solutions to the ‘faint young Sun’ hypothesis by determining the age of microbial methanogenesis has been limited by ambiguous geochemical evidence and the absence of a diagnostic fossil record. To overcome these challenges, we use a temporal constraint: a horizontal gene transfer event from within archaeal methanogens to the ancestor of Cyanobacteria, one of the few microbial clades with recognized crown-group fossils. Results of molecular clock analyses calibrated by this horizontal-gene-transfer-propagated constraint show methanogens diverging within Euryarchaeota no later than 3.51 billion years ago, with methanogenesis itself probably evolving earlier. This timing provides independent support for scenarios wherein microbial methane production was important in maintaining temperatures on the early Earth. Microbial methanogenesis during the Archaean eon may explain the high temperatures needed to support a liquid hydrosphere. Here, the authors find support for methanogenesis predating the Archaean by analysing horizontal gene transfer events between methanogenic Archaea and Cyanobacteria.

[1]  P. Forterre,et al.  Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes , 2017, PLoS genetics.

[2]  M. dos Reis,et al.  RelTime Rates Collapse to a Strict Clock When Estimating the Timeline of Animal Diversification , 2017, Genome biology and evolution.

[3]  W. Fischer,et al.  Crown group Oxyphotobacteria postdate the rise of oxygen , 2017, Geobiology.

[4]  Julie Marin,et al.  The Timetree of Prokaryotes: New Insights into Their Evolution and Speciation. , 2016, Molecular biology and evolution.

[5]  Donovan H. Parks,et al.  Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota , 2016, Nature Microbiology.

[6]  L. Harmon,et al.  A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time , 2016, PloS one.

[7]  G. Edgecombe,et al.  FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE , 2016, bioRxiv.

[8]  R. Summons,et al.  Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago , 2016, Science Advances.

[9]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[10]  Emmanuel F. A. Toussaint,et al.  To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: Nicrophorus) , 2016 .

[11]  Bettina E. Schirrmeister,et al.  Cyanobacterial evolution during the Precambrian , 2016, International Journal of Astrobiology.

[12]  J. Schenk,et al.  Consequences of Secondary Calibrations on Divergence Time Estimates , 2016, PloS one.

[13]  D. Pisani,et al.  Animal Evolution: Only Rocks Can Set the Clock , 2015, Current Biology.

[14]  N. Butterfield Proterozoic photosynthesis – a critical review , 2015 .

[15]  Donovan H. Parks,et al.  Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics , 2015, Science.

[16]  Philip C. J. Donoghue,et al.  Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils , 2015, Palaeontology.

[17]  Matthieu Muffato,et al.  Current Methods for Automated Filtering of Multiple Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference , 2015, Systematic biology.

[18]  J. Wiens,et al.  Do missing data influence the accuracy of divergence-time estimation with BEAST? , 2015, Molecular phylogenetics and evolution.

[19]  Sebastián Duchêne,et al.  Molecular‐clock methods for estimating evolutionary rates and timescales , 2014, Molecular ecology.

[20]  J. Ng,et al.  How traits shape trees: new approaches for detecting character state‐dependent lineage diversification , 2014, Journal of evolutionary biology.

[21]  R. Lanfear,et al.  The impact of calibration and clock-model choice on molecular estimates of divergence times. , 2014, Molecular phylogenetics and evolution.

[22]  R. Ricklefs,et al.  On Age and Species Richness of Higher Taxa , 2014, The American Naturalist.

[23]  E. Boyle,et al.  Methanogenic burst in the end-Permian carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[24]  O. Toon,et al.  Controls on the Archean climate system investigated with a global climate model. , 2014, Astrobiology.

[25]  L. Revell ANCESTRAL CHARACTER ESTIMATION UNDER THE THRESHOLD MODEL FROM QUANTITATIVE GENETICS , 2014, Evolution; international journal of organic evolution.

[26]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[27]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[28]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[29]  K. Kurokawa,et al.  Origin of methane in serpentinite-hosted hydrothermal systems: The CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring , 2014 .

[30]  R. A. Pyron,et al.  Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. , 2013, Trends in ecology & evolution.

[31]  J. Gogarten,et al.  The effects of model choice and mitigating bias on the ribosomal tree of life. , 2013, Molecular phylogenetics and evolution.

[32]  S. Gribaldo,et al.  Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis , 2013, Genome biology and evolution.

[33]  Daniel Stubbs,et al.  PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. , 2013, Systematic biology.

[34]  Luke J. Harmon,et al.  Arbor: Comparative Analysis Workflows for the Tree of Life , 2013, PLoS currents.

[35]  P. Shih,et al.  Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins , 2013, Proceedings of the National Academy of Sciences.

[36]  Bettina E. Schirrmeister,et al.  Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event , 2013, Proceedings of the National Academy of Sciences.

[37]  D. Moreira,et al.  Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea , 2012, BMC Evolutionary Biology.

[38]  Gergely J. Szöllősi,et al.  Lateral Gene Transfer from the Dead , 2012, Systematic biology.

[39]  Sophie S Abby,et al.  Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations , 2012, Proceedings of the National Academy of Sciences.

[40]  Olivier Gascuel,et al.  Modeling protein evolution with several amino acid replacement matrices depending on site rates. , 2012, Molecular biology and evolution.

[41]  Vladimir Makarenkov,et al.  T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks , 2012, Nucleic Acids Res..

[42]  M. Gandolfo,et al.  Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). , 2012, Systematic biology.

[43]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[44]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[45]  Lawrence A. David,et al.  Rapid evolutionary innovation during an Archaean genetic expansion , 2011, Nature.

[46]  K. Meusemann,et al.  FASconCAT: Convenient handling of data matrices. , 2010, Molecular phylogenetics and evolution.

[47]  Tal Pupko,et al.  GUIDANCE: a web server for assessing alignment confidence scores , 2010, Nucleic Acids Res..

[48]  C. Blank,et al.  Not so old Archaea – the antiquity of biogeochemical processes in the archaeal domain of life , 2009, Geobiology.

[49]  K. Knittel,et al.  Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. , 2009, Environmental microbiology reports.

[50]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[51]  C. Blank Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits. , 2009, Astrobiology.

[52]  S. Hedges,et al.  A major clade of prokaryotes with ancient adaptations to life on land. , 2009, Molecular biology and evolution.

[53]  James F Kasting,et al.  A revised, hazy methane greenhouse for the Archean Earth. , 2008, Astrobiology.

[54]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[55]  Olivier Gascuel,et al.  Empirical profile mixture models for phylogenetic reconstruction , 2008, Bioinform..

[56]  C. Dutta,et al.  Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes , 2008, Genome Biology.

[57]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[58]  Radhey S. Gupta,et al.  Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis , 2007, BMC Genomics.

[59]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[60]  A. Knoll,et al.  The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[62]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[63]  J. Gogarten,et al.  The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. , 2005, Molecular biology and evolution.

[64]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[65]  S. Hedges,et al.  A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land , 2004, BMC Evolutionary Biology.

[66]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[67]  Margarete M S Heck,et al.  The evolution of SMC proteins: phylogenetic analysis and structural implications. , 2004, Molecular biology and evolution.

[68]  S. Fitz-Gibbon,et al.  Geobiological analysis using whole genome‐based tree building applied to the Bacteria, Archaea, and Eukarya , 2003 .

[69]  Satoshi Fukuchi,et al.  Unique amino acid composition of proteins in halophilic bacteria. , 2003, Journal of molecular biology.

[70]  Katherine H. Freeman,et al.  Estimated Minimal Divergence Times of the Major Bacterial and Archaeal Phyla , 2003 .

[71]  K. Hinrichs Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? , 2002 .

[72]  J. Soppa,et al.  Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. , 2001, Gene.

[73]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[74]  J. Gogarten,et al.  Horizontal gene transfer: pitfalls and promises. , 1999 .

[75]  H. Erickson,et al.  The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge , 1998, The Journal of cell biology.

[76]  J. Bertrand-Sarfati,et al.  Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon , 1997 .

[77]  D. Gough Solar interior structure and luminosity variations , 1981 .

[78]  J. Barker,et al.  Carbon isotope fractionation during microbial methane oxidation , 1981, Nature.

[79]  J. Donaldson,et al.  Microfossils from the Middle Proterozoic Dismal Lakes Groups, Arctic Canada , 1980 .

[80]  Jinling Huang,et al.  Ancient gene transfer as a tool in phylogenetic reconstruction. , 2009, Methods in molecular biology.

[81]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[82]  A. Pearson,et al.  Building the Biomarker Tree of Life , 2005 .

[83]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .