Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous media

In this paper, we present a monolithic multigrid method for the efficient solution of flow problems in fractured porous media. Specifically, we consider a mixed-dimensional model which couples Darcy flow in the porous matrix with Forchheimer flow within the fractures. A suitable finite volume discretization permits to reduce the coupled problem to a system of nonlinear equations with a saddle point structure. In order to solve this system, we propose a full approximation scheme (FAS) multigrid solver that appropriately deals with the mixed-dimensional nature of the problem by using mixed-dimensional smoothing and inter-grid transfer operators. Remarkably, the nonlinearity is localized in the fractures, and no coupling between the porous matrix and the fracture unknowns is needed in the smoothing procedure. Numerical experiments show that the proposed multigrid method is robust with respect to the fracture permeability, the Forchheimer coefficient and the mesh size.

[1]  J. Geertsma Estimating the Coefficient of Inertial Resistance in Fluid Flow Through Porous Media , 1974 .

[2]  Dong Liang,et al.  A multipoint flux mixed finite element method for the compressible Darcy-Forchheimer models , 2017, Appl. Math. Comput..

[3]  Cornelis W. Oosterlee,et al.  Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system , 2018, J. Comput. Phys..

[4]  Chiang C. Mei,et al.  The effect of weak inertia on flow through a porous medium , 1991, Journal of Fluid Mechanics.

[5]  Peter Knabner,et al.  Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture , 2014, ArXiv.

[6]  Philippe Angot,et al.  ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA , 2009 .

[7]  M. W. Conway,et al.  Beyond Beta Factors: A Complete Model for Darcy, Forchheimer, and Trans-Forchheimer Flow in Porous Media , 2004 .

[8]  Jean-Raynald de Dreuzy,et al.  A Generalized Mixed Hybrid Mortar Method for Solving Flow in Stochastic Discrete Fracture Networks , 2012, SIAM J. Sci. Comput..

[9]  Jian Huang,et al.  Multigrid Methods for a Mixed Finite Element Method of the Darcy–Forchheimer Model , 2016, J. Sci. Comput..

[10]  Zhangxin Chen,et al.  Derivation of the Forchheimer Law via Homogenization , 2001 .

[11]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[12]  Vincent Martin,et al.  Modeling fractures as interfaces with nonmatching grids , 2012, Computational Geosciences.

[13]  Najla Frih,et al.  Un modèle Darcy-Forchheimer pour un écoulement dans un milieu poreux fracturé , 2006 .

[14]  S. Whitaker The Forchheimer equation: A theoretical development , 1996 .

[15]  Alessio Fumagalli,et al.  Well Posedness of Fully Coupled Fracture/Bulk Darcy Flow with XFEM , 2017, SIAM J. Numer. Anal..

[16]  Eun-Jae Park Mixed finite element methods for generalized Forchheimer flow in porous media , 2005 .

[17]  T. Giorgi Derivation of the Forchheimer Law Via Matched Asymptotic Expansions , 1997 .

[18]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[19]  Youcef Amirat,et al.  Écoulements en milieu poreux n'obéissant pas à la loi de Darcy , 1985 .

[20]  Joseph A. Ayoub,et al.  Applicability of the Forchheimer Equation for Non-Darcy Flow in Porous Media , 2008 .

[21]  William G. Gray,et al.  High velocity flow in porous media , 1987 .

[22]  Alessio Fumagalli,et al.  Implementation of mixed-dimensional models for flow in fractured porous media , 2017, ArXiv.

[23]  Pierre Fabrie Regularity of the solution of Darcy-Forchheimer's equation , 1989 .

[24]  Roland Masson,et al.  TP or not TP, that is the question , 2014, Computational Geosciences.

[25]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[26]  Alessio Fumagalli,et al.  A reduced model for Darcy’s problem in networks of fractures , 2014 .

[27]  Jean E. Roberts,et al.  Modeling fractures as interfaces: a model for Forchheimer fractures , 2008 .

[28]  Hongxing Rui,et al.  A Block-Centered Finite Difference Method for the Darcy-Forchheimer Model , 2012, SIAM J. Numer. Anal..

[29]  Thinh Kieu,et al.  Analysis of expanded mixed finite element methods for the generalized forchheimer flows of slightly compressible fluids , 2016 .

[30]  Mary F. Wheeler,et al.  Numerical discretization of a Darcy–Forchheimer model , 2008, Numerische Mathematik.

[31]  Wei Liu,et al.  A Two-Grid Block-Centered Finite Difference Method For Darcy-Forchheimer Flow in Porous Media , 2015, SIAM J. Numer. Anal..

[32]  Hongxing Rui,et al.  A Block-Centered Finite Difference Method for Slightly Compressible Darcy–Forchheimer Flow in Porous Media , 2017, Journal of Scientific Computing.

[33]  Douglas Ruth,et al.  On the derivation of the Forchheimer equation by means of the averaging theorem , 1992 .

[34]  Alessio Fumagalli,et al.  A Review of the XFEM-Based Approximation of Flow in Fractured Porous Media , 2016 .

[35]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[36]  Peter Knabner,et al.  Sovability of the mixed Formulation for Darcy-Forchheimer Flow in Porous Media , 2016, 1608.08829.

[37]  Andro Mikelić,et al.  Polynomial Filtration Laws for Low Reynolds Number Flows Through Porous Media , 2010 .

[38]  C. D'Angelo,et al.  A mixed finite element method for Darcy flow in fractured porous media with non-matching grids , 2012 .

[39]  M. Fourar,et al.  Physical splitting of nonlinear effects in high-velocity stable flow through porous media , 2006 .

[40]  Cornelis W. Oosterlee,et al.  Uzawa Smoother in Multigrid for the Coupled Porous Medium and Stokes Flow System , 2017, SIAM J. Sci. Comput..

[41]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[42]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[43]  Hongxing Rui,et al.  A two‐grid stabilized mixed finite element method for Darcy‐Forchheimer model , 2018 .