Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

Single-crystalline KY1−x−y−zGdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.

[1]  R Ulrich,et al.  Measurement of thin film parameters with a prism coupler. , 1973, Applied optics.

[2]  J. Gavaldà,et al.  Linear Thermal Expansion Tensor in KRE(WO4)2 (RE=Gd, Y, Er, Yb) Monoclinic Crystals , 2001 .

[3]  Steven R Bowman,et al.  Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate. , 2005, Applied optics.

[4]  O Beom-Hoan,et al.  Novel design concept of waveguide mode adapter for low-loss mode conversion , 2001 .

[5]  K Wörhoff,et al.  Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser. , 2010, Optics express.

[6]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[7]  Markus Pollnau,et al.  Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2). , 2007, Optics letters.

[8]  Valentin Petrov,et al.  Yb-doped KY(WO4)2 planar waveguide laser. , 2006, Optics letters.

[9]  M. Pollnau,et al.  Highly efficient Yb3+-doped channel waveguide laser at 981 nm. , 2013, Optics express.

[10]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[11]  Xavier Mateos,et al.  Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .

[12]  A. D. Prokhorov,et al.  Spin-spin interaction of Dy3+ ions in KY(WO4)2 , 2002 .

[13]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[14]  U. Griebner,et al.  Thermally bonded Yb:YAG planar waveguide laser , 1999 .

[15]  G. Mourou,et al.  Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser. , 2001, Optics letters.

[16]  Edward H. Bernhardi,et al.  Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers , 2009 .

[17]  Magdalena Aguiló,et al.  Growth of β-KGd1 − xNdx(WO4)2 single crystals in K2W2O7 solvents , 1996 .

[18]  G. Baldacchini,et al.  Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3 , 2003 .

[19]  Magdalena Aguiló,et al.  Growth and characterisation of monoclinic KGd1−xREx(WO4)2 single crystals , 1999 .

[20]  C. Goutaudier,et al.  Growth of KY(WO4)2 single crystal: investigation of the WO3 rich region in the K2O-Y2O3-WO3 ternary system. 2 — The KY(WO4)2 crystallisation field , 1998 .

[21]  Y. Romanyuk Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers , 2005 .

[22]  X. Mateos,et al.  Laser operation of the new stoichiometric crystal KYb(WO4)2 , 2002 .

[23]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[24]  Dimitri Geskus,et al.  High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers. , 2010, Optics express.

[25]  J. Gavaldà,et al.  Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution , 2001 .

[26]  A. Lagatsky,et al.  Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). , 1997, Optics letters.

[27]  Xavier Mateos,et al.  Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix , 2002 .

[28]  T. Jensen,et al.  CW laser performance of Yb and Er,Yb doped tungstates , 1997 .

[29]  M. Aguiló,et al.  Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals , 1999 .

[30]  G. Boulon,et al.  Nucleation, morphology and spectroscopic properties of Yb3+-doped KY(WO4)2 crystals grown by the top nucleated floating crystal method , 1999 .

[31]  M. Pollnau,et al.  Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Xavier Mateos,et al.  Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2 , 2006 .

[33]  Adolf Giesen,et al.  Highly Yb-doped oxides for thin-disc lasers , 2005 .

[34]  Dimitri Geskus,et al.  Giant Optical Gain in a Rare‐Earth‐Ion‐Doped Microstructure , 2012, Advanced materials.

[35]  A. A. Pavlyuk,et al.  Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals , 2001 .

[36]  A. Lagatsky,et al.  Diode-pumped CW lasing of Yb:KYW and Yb:KGW , 1999 .

[37]  H. Arwin,et al.  Selection of the physically correct solution in the n-media Bruggeman effective medium approximation , 1994 .

[38]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[39]  J. S. Aitchison,et al.  Characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO4)2 , 2003 .