Supersaturation controlled morphology and aspect ratio changes of benzoic acid crystals

[1]  Carl J. Tilbury,et al.  Predicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules , 2016 .

[2]  Xinggui Zhou,et al.  Understanding supersaturation‐dependent crystal growth of L‐alanine in aqueous solution , 2016 .

[3]  L. Achenie,et al.  Effect of Solvent Topography and Steric Hindrance on Crystal Morphology , 2015 .

[4]  Megan A. Ketchum,et al.  Molecular Mechanisms of Hematin Crystallization from Organic Solvent , 2015 .

[5]  Jianfeng Chen,et al.  Qualitative rationalization of the crystal growth morphology of benzoic acid controlled using solvents , 2014 .

[6]  K. Roberts,et al.  Precision measurement of the growth rate and mechanism of ibuprofen {001} and {011} as a function of crystallization environment , 2014 .

[7]  Wei Wang,et al.  A systematic study of solvent effect on the crystal habit of dirithromycin solvates by computer simulation , 2014, Comput. Chem. Eng..

[8]  V. Ranade,et al.  Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects , 2013, Sadhana.

[9]  Xue Z. Wang,et al.  Optimization and control of crystal shape and size in protein crystallization process , 2013, Comput. Chem. Eng..

[10]  Y. Jang,et al.  Effect of Supersaturation on the Particle Size of Ammonium Sulfate in Semibatch Evaporative Crystallization , 2013 .

[11]  Jianfeng Chen,et al.  Crystal structure and habit of dirithromycin acetone solvate: A combined experimental and simulative study , 2013 .

[12]  A. Banerjee,et al.  Role of Solvent and External Growth Environments to Determine Growth Morphology of Molecular Crystals , 2013 .

[13]  Xinggui Zhou,et al.  Effect of Impurity on the Lateral Crystal Growth of l-Alanine: A Combined Simulation and Experimental Study , 2012 .

[14]  X. Cheng,et al.  Mechanism of Morphology Transformation of Tetragonal Phase LaVO4 Nanocrystals Controlled by Surface Chemistry: Experimental and Theoretical Insights , 2012 .

[15]  Joachim Ulrich,et al.  Morphology prediction of crystals grown in the presence of impurities and solvents — An evaluation of the state of the art , 2012 .

[16]  Joachim Ulrich,et al.  Predicting Crystal Morphology Grown from Solution , 2012 .

[17]  Michael F. Doherty,et al.  Predictive Modeling of Supersaturation-Dependent Crystal Shapes , 2012 .

[18]  A. Bacchi,et al.  Exploration of supramolecular synthons and molecular recognition starting from macroscopic measurements of crystal dimensions. , 2011, Angewandte Chemie.

[19]  Jae-wook Jung,et al.  Effect of Supersaturation on the Morphology of Coated Surface in Coating by Solution Crystallization , 2011 .

[20]  J. Ulrich,et al.  Modeling the morphology of benzoic acid crystals grown from aqueous solution , 2011 .

[21]  Qiang Shi,et al.  Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. , 2011, Journal of the American Chemical Society.

[22]  Xue Zhong Wang,et al.  Effect of seed loading and cooling rate on crystal size and shape distributions in protein crystallization - A study using morphological population balance simulation , 2010, Comput. Chem. Eng..

[23]  Jie Chen,et al.  Computer-Aided Solvent Selection for Improving the Morphology of Needle-like Crystals: A Case Study of 2,6-Dihydroxybenzoic Acid , 2010 .

[24]  Luke E. K. Achenie,et al.  Solvent design for crystallization of carboxylic acids , 2009, Comput. Chem. Eng..

[25]  Andrea R. Browning,et al.  Crystal Shape Engineering , 2008 .

[26]  J. Delgado Experimental data of solubility at different temperatures: a simple technique , 2007 .

[27]  Pei-sheng Ma,et al.  The effect of temperature on the solubility of benzoic acid derivatives in water , 2006 .

[28]  Rafiqul Gani,et al.  A computer-aided molecular design framework for crystallization solvent design , 2006 .

[29]  P. A. Larsen,et al.  MANIPULATING CRYSTAL SIZE, SHAPE, AND STRUCTURE , 2006 .

[30]  J. Ulrich,et al.  The influence of supersaturation on crystal morphology – experimental and theoretical study , 2005 .

[31]  Richard D. Braatz,et al.  First-principles and direct design approaches for the control of pharmaceutical crystallization , 2005 .

[32]  S. Boerrigter,et al.  Experimental and computational growth morphology of two polymorphs of a yellow isoxazolone dye. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. L. Ma,et al.  Optimal control and simulation of multidimensional crystallization processes , 2002 .

[34]  S. Finnie,et al.  Macro- and Micromorphology of Monoclinic Paracetamol Grown from Pure Aqueous Solution , 2001 .

[35]  A. Mersmann,et al.  Estimation of metastable zone width in different nucleation processes , 2001 .

[36]  L. Leiserowitz,et al.  The effect of solvent on crystal growth and morphology , 2001 .

[37]  A. Mersmann,et al.  How to predict the metastable zone width , 1998 .

[38]  K. Roberts,et al.  The importance of considering growth-induced conformational change in predicting the morphology of benzophenone , 1993 .

[39]  Alfons Mersmann,et al.  General prediction of median crystal sizes , 1992 .

[40]  B. Andersson,et al.  Concentration‐dependent diffusivity of benzoic acid in water and its influence on the liquid–solid mass transfer , 1986 .

[41]  R. Davey The role of the solvent in crystal growth from solution , 1986 .

[42]  Z. Berkovitch-yellin Toward an ab initio derivation of crystal morphology , 1985 .

[43]  P. Bennema,et al.  The attachment energy as a habit controlling factor: I. Theoretical considerations , 1980 .

[44]  J. Robertson,et al.  The crystal and molecular structure of benzoic acid , 1955 .

[45]  H. L. Ward,et al.  The System Benzoic Acid, Orthophthalic Acid, Water , 1929 .