Shrinking Binary Images

Abstract The general problem of shrinking binary images is addressed with emphasis on the problem of shrinking to a residue. Past work in this area is reviewed, fundamental limits are discussed and open questions are identified. Emphasis is given to techniques which can be used to verify correct performance of shrinking algorithms, including successful algorithm termination and connectivity preservation. New connectivity preservation tests are developed for parallel 2D reductive-augmentative algorithms and the application of these tests is demonstrated for a variety of shrinking algorithms. A new 2D completely parallel single-operator shrinking algorithm is developed using connectivity preservation requirements to guide the design process. Issues in 3D shrinking are also reviewed.

[1]  Donald Michie,et al.  Machine Intelligence 4 , 1970 .

[2]  Marvin Minsky,et al.  Perceptrons: expanded edition , 1988 .

[3]  C. V Kameswara Rao,et al.  A parallel shrinking algorithm for binary patterns , 1976 .

[4]  Marcel J. E. Golay,et al.  Hexagonal Parallel Pattern Transformations , 1969, IEEE Transactions on Computers.

[5]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[6]  Stefano Levialdi,et al.  Parallel shrinking in three dimensions , 1972, Comput. Graph. Image Process..

[7]  Jorge L. C. Sanz,et al.  Algorithms for Image Component Labeling on SIMD Mesh-Connected Computers , 1987, IEEE Trans. Computers.

[8]  Grégoire Malandain,et al.  Fast characterization of 3D simple points , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[9]  Dipanwita Roy Chowdhury,et al.  Cellular Automata—Theory and Applications , 1990 .

[10]  R. W. Hall Tests for connectivity preservation for parallel reduction operators , 1992 .

[11]  Frans C. A. Groen,et al.  Three-Dimensional Skeletonization: Principle and Algorithm , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Stefano Levialdi,et al.  Parallel thinning of binary pictures , 1975 .

[13]  Gilles Bertrand,et al.  Sufficient conditions for 3D parallel thinning algorithms , 1995, Optics & Photonics.

[14]  John Mylopoulos,et al.  Some Results in Computational Topology , 1973, JACM.

[15]  James H. Jackson The Data Transport Computer: a 3-dimensional massively parallel SIMD computer , 1991, COMPCON Spring '91 Digest of Papers.

[16]  T. Yung Kong,et al.  A digital fundamental group , 1989, Comput. Graph..

[17]  T. Fukumura,et al.  An Analysis of Topological Properties of Digitized Binary Pictures Using Local Features , 1975 .

[18]  Josef Kittler,et al.  Image processing system architectures , 1985 .

[19]  R. E. Kessler,et al.  Cray T3D: a new dimension for Cray Research , 1993, Digest of Papers. Compcon Spring.

[20]  Azriel Rosenfeld,et al.  Digital Picture Processing, Volume 1 , 1982 .

[21]  Viktor K. Prasanna,et al.  Fast Image Labeling Using Local Operators on Mesh-Connected Computers , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Richard W. Hall,et al.  Fast parallel thinning algorithms: parallel speed and connectivity preservation , 1989, CACM.

[23]  Stefano Levialdi,et al.  On shrinking binary picture patterns , 1972, CACM.

[24]  Malcolm J. Shute,et al.  Multiprocessor Computer Architectures , 1990 .

[25]  Gilles Bertrand,et al.  Three-dimensional thinning algorithm using subfields , 1995, Other Conferences.

[26]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[27]  Richard W. Hall Optimally Small Operator Supports for Fully Parallel Thinning Algorithms , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[29]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[30]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[31]  Ehud Shapiro,et al.  Spatial machines: a more realistic approach to parallel computation , 1992, CACM.

[32]  Richard W. Hall,et al.  Parallel shrinking algorithms using 2-subfields approaches , 1990, Comput. Vis. Graph. Image Process..

[33]  Richard W. Hall Connectivity preservation tests for parallel reduction-augmentation algorithms , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2 - Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-5).

[34]  C. J. Hilditch,et al.  Linear Skeletons From Square Cupboards , 1969 .

[35]  Richard W. Hall Connectivity-preserving parallel operators in 2D and 3D images , 1993, Other Conferences.

[36]  Michael D. Noakes,et al.  System design of the J-Machine , 1990 .

[37]  Azriel Rosenfeld,et al.  Some Parallel Thinning Algorithms for Digital Pictures , 1971, JACM.

[38]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[39]  Kendall Preston,et al.  Three-dimensional skeletonization of elongated solids , 1983, Comput. Vis. Graph. Image Process..

[40]  Satoru Kawai,et al.  On the topology preservation property of local parallel operations , 1982, Comput. Graph. Image Process..

[41]  Terry J. Fountain,et al.  Cellular logic image processing , 1986 .

[42]  Christian Ronse,et al.  Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images , 1988, Discret. Appl. Math..

[43]  Thomas D. Clark,et al.  Corporate systems management: an overview and research perspective , 1992, CACM.

[44]  Azriel Rosenfeld,et al.  A Characterization of Parallel Thinning Algorithms , 1975, Inf. Control..

[45]  Satoru Kawai Topology quasi-preservation by local parallel operations , 1983, Comput. Vis. Graph. Image Process..

[46]  W. Beyer RECOGNITION OF TOPOLOGICAL INVARIANTS BY ITERATIVE ARRAYS , 1969 .

[47]  Bhabatosh Chanda,et al.  Topology preservation in 3D digital space , 1994, Pattern Recognit..

[48]  Gilles Bertrand,et al.  A simple parallel 3D thinning algorithm , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[49]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[50]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[51]  King-Sun Fu,et al.  A parallel thinning algorithm for 3-D pictures , 1981 .

[52]  Cherng Min Ma,et al.  On topology preservation in 3D thinning , 1994 .

[53]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[54]  Carlo Arcelli,et al.  Pattern thinning by contour tracing , 1981 .

[55]  Patrick Shen-Pei Wang,et al.  A comment on “a fast parallel algorithm for thinning digital patterns” , 1986, CACM.

[56]  T. Yung Kong,et al.  On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..

[57]  Hungwen Li,et al.  Reconfigurable Massively Parallel Computers , 1991 .

[58]  Carlo Arcelli A condition for digital points removal , 1979 .

[59]  Richard W. Hall,et al.  Parallel 3D shrinking algorithms using subfields notions , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.