Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.
暂无分享,去创建一个
L Li | A. Banerjee | G. Granroth | R. Moessner | M. Stone | M. Lumsden | C. Bridges | S. Nagler | D. Mandrus | L. Li | J. Knolle | S. Bhattacharjee | D. Tennant | A. Aczel | M D Lumsden | S E Nagler | M B Stone | D. Kovrizhin | J.-Q. Yan | A A Aczel | G E Granroth | R Moessner | D G Mandrus | A Banerjee | C A Bridges | J-Q Yan | Y Yiu | J Knolle | S Bhattacharjee | D L Kovrizhin | D A Tennant | Yuen Yiu
[1] B. J. Kim,et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3 , 2015, Nature Physics.
[2] Young-June Kim,et al. Scattering continuum and possible fractionalized excitations in α-RuCl(3). , 2015, Physical review letters.
[3] Y. Motome,et al. Thermal Fractionalization of Quantum Spins in a Kitaev Model: Coherent Transport of Majorana Fermions and $T$-linear Specific Heat , 2015, 1504.01259.
[4] H. Kee,et al. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α − RuCl 3 , 2015, 1503.07593.
[5] Y. Narumi,et al. Successive magnetic phase transitions in α − RuCl 3 : XY-like frustrated magnet on the honeycomb lattice , 2015, 1503.03591.
[6] M. Vojta,et al. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape , 2015, 1502.03063.
[7] G. Khaliullin,et al. Hidden symmetries of the extended Kitaev-Heisenberg model:Implications for the honeycomb-lattice iridates A2IrO3 , 2015, 1502.02587.
[8] H. Kee,et al. Kitaev magnetism in honeycomb RuCl 3 with intermediate spin-orbit coupling , 2014, 1411.6623.
[9] M. Schmidt,et al. Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR , 2014, 1411.6515.
[10] Yang Zhao,et al. Magnetic order in α -RuCl 3 : A honeycomb-lattice quantum magnet with strong spin-orbit coupling , 2014, 1411.4610.
[11] S. Lyon,et al. ESR measurements of phosphorus dimers in isotopically enriched , 2014, 1409.3534.
[12] H. Kee,et al. Trigonal distortion in the honeycomb iridates: Proximity of zigzag and spiral phases in Na2IrO3 , 2014, 1408.4811.
[13] N. Perkins,et al. Importance of anisotropic exchange interactions in honeycomb iridates: Minimal model for zigzag antiferromagnetic order in Na 2 IrO 3 , 2014, 1408.3647.
[14] Y. Motome,et al. Vaporization of Kitaev spin liquids. , 2014, Physical review letters.
[15] R. Moessner,et al. Raman scattering signatures of Kitaev spin liquids in A(2)IrO(3) iridates with A=Na or Li. , 2014, Physical review letters.
[16] N. Gedik,et al. Confinement-deconfinement transition as an indication of spin-liquid-type behavior in Na(2)IrO(3). , 2014, Physical review letters.
[17] H. Takagi,et al. Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. , 2014, Physical review letters.
[18] H. Kee,et al. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice , 2014, 1403.0883.
[19] B. Lake,et al. Linear spin wave theory for single-Q incommensurate magnetic structures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[20] T. Smidt,et al. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate , 2014, Nature Communications.
[21] H. Kandpal,et al. Kitaev interactions between j = 1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations , 2013, 1312.7437.
[22] N. Perkins,et al. Interplay of many-body and single-particle interactions in iridates and rhodates , 2013, 1311.0852.
[23] H. Kee,et al. Generic spin model for the honeycomb iridates beyond the Kitaev limit. , 2013, Physical review letters.
[24] R. Moessner,et al. Dynamics of a Two-Dimensional Quantum Spin Liquid: Signatures of Emergent Majorana Fermions and Fluxes , 2013, 1308.4336.
[25] A. Said,et al. Magnetic excitation spectrum of Na2IrO3 probed with resonant inelastic x-ray scattering , 2013, 1304.4484.
[26] Daniel G. Nocera,et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.
[27] G. Jackeli,et al. Zigzag magnetic order in the iridium oxide Na2IrO3. , 2012, Physical review letters.
[28] S. Chi,et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na2IrO3 , 2012, 1202.3995.
[29] S. Cheong,et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. , 2012, Physical review letters.
[30] Jiao Y. Y. Lin,et al. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. , 2012, The Review of scientific instruments.
[31] Yogesh Singh,et al. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.
[32] K.,et al. SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS , 2010 .
[33] T. Shibauchi,et al. Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid , 2010, Science.
[34] G. Jackeli,et al. Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.
[35] L. Balents. Spin liquids in frustrated magnets , 2010, Nature.
[36] B. J. Kim,et al. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.
[37] G. Jackeli,et al. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.
[38] P. Lee. An End to the Drought of Quantum Spin Liquids , 2008, Science.
[39] S. Sachdev. Quantum magnetism and criticality , 2007, 0711.3015.
[40] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[41] R. Shankar,et al. Exact results for spin dynamics and fractionalization in the Kitaev Model. , 2006, Physical review letters.
[42] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[43] S. Nagler,et al. Quantum criticality and universal scaling of a quantum antiferromagnet , 2005, Nature materials.
[44] W. E. Gardner,et al. Anhydrous Ruthenium Chlorides , 1963, Nature.
[45] T. Nagamiya,et al. Lattice Vibration Specific Heat of Graphite , 1954 .
[46] M. Pryce,et al. On the magnetic properties of covalent XY 6 complexes , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[47] Robert Kohl,et al. Electron Paramagnetic Resonance Of Transition Ions , 2016 .
[48] Kim,et al. Orbital excitations in the 4d spin-orbit coupled Mott insulator α-RuCl3 , 2015 .
[49] S. Cheong,et al. Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na_{2}IrO_{3} , 2014 .
[50] W. E. Gardner,et al. X-Ray, infrared, and magnetic studies of α- and β-ruthenium trichloride , 1967 .
[51] G. Webb,et al. Magnetic properties of some iron(III) and ruthenium(III) low-spin complexes , 1966 .
[52] D. Cromer,et al. Scattering factors computed from relativistic Dirac–Slater wave functions , 1965 .