Observation of current-induced, long-lived persistent spin polarization in a topological insulator: A rechargeable spin battery

We report a current-induced, persistent, long-lived, and rewritable electron spin polarization in a 3D topological insulator. Topological insulators (TIs), with their helically spin-momentum–locked topological surface states (TSSs), are considered promising for spintronics applications. Several recent experiments in TIs have demonstrated a current-induced electronic spin polarization that may be used for all-electrical spin generation and injection. We report spin potentiometric measurements in TIs that have revealed a long-lived persistent electron spin polarization even at zero current. Unaffected by a small bias current and persisting for several days at low temperature, the spin polarization can be induced and reversed by a large “writing” current applied for an extended time. Although the exact mechanism responsible for the observed long-lived persistent spin polarization remains to be better understood, we speculate on possible roles played by nuclear spins hyperfine-coupled to TSS electrons and dynamically polarized by the spin-helical writing current. Such an electrically controlled persistent spin polarization with unprecedented long lifetime could enable a rechargeable spin battery and rewritable spin memory for potential applications in spintronics and quantum information.

[1]  M. Kanatzidis,et al.  Understanding Bulk Defects in Topological Insulators from Nuclear‐Spin Interactions , 2015, 1506.06338.

[2]  Yoichi Ando,et al.  Large bulk resistivity and surface quantum oscillations in the topological insulator Bi 2 Te 2 Se , 2010, 1011.2846.

[3]  Yoichi Ando,et al.  Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi(1.5)Sb(0.5)Te(1.7)Se(1.3). , 2014, Nano letters.

[4]  Xuedong Hu,et al.  Theoretical perspectives on spintronics and spin-polarized transport , 2000 .

[5]  T. Ohshima,et al.  Locking of electron spin coherence above 20 ms in natural silicon carbide , 2016, 1602.05775.

[6]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[7]  B. M. Norman,et al.  Dynamic nuclear polarization from current-induced electron spin polarization , 2014, 1405.0342.

[8]  B. Sapoval,et al.  Desaimantation d'un systeme de spins nucleaires dilues relaxation spin-reseau dans le silicium tres pur , 1966 .

[9]  P. R. Hammar,et al.  Potentiometric measurements of the spin-split subbands in a two-dimensional electron gas , 2000 .

[10]  Hyung-jun Kim,et al.  Observation of gate-controlled spin―orbit interaction using a ferromagnetic detector , 2012 .

[11]  M. Kamalakar,et al.  Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators. , 2014, Nano letters.

[12]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[13]  C. Adelmann,et al.  Electrical detection of spin transport in lateral ferromagnet–semiconductor devices , 2006, cond-mat/0701021.

[14]  A. Greilich,et al.  Subsecond spin relaxation times in quantum dots at zero applied magnetic field due to a strong electron-nuclear interaction. , 2007, Physical review letters.

[15]  C. Adelmann,et al.  Electron spin dynamics and hyperfine interactions in Fe Al0.1Ga0.9As GaAs spin injection heterostructures , 2005, cond-mat/0501096.

[16]  L. Vandersypen,et al.  Locking electron spins into magnetic resonance by electron–nuclear feedback , 2009, 0902.2659.

[17]  J. Crocker,et al.  Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3 , 2013, 1304.6768.

[18]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[19]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .

[20]  Controlling and distinguishing electronic transport of topological and trivial surface states in a topological insulator , 2014, 1409.3217.

[21]  L. Bouchard,et al.  Spin-lattice relaxation in bismuth chalcogenides , 2012, 1506.06342.

[22]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[23]  Dynamic nuclear polarization by electrical spin injection in ferromagnet-semiconductor heterostructures. , 2003, Physical review letters.

[24]  Electrical readout of the local nuclear polarization in the quantum Hall effect: a hyperfine battery. , 2005, Physical review letters.

[25]  G. Feher NUCLEAR POLARIZATION VIA "HOT" CONDUCTION ELECTRONS , 1959 .

[26]  J. Bokor,et al.  All-electrical nuclear spin polarization of donors in silicon. , 2013, Physical review letters.

[27]  M. Orlita,et al.  Hyperfine coupling and spin polarization in the bulk of the topological insulator Bi 2 Se 3 , 2014, 1407.1040.

[28]  Nanette N. Jarenwattananon,et al.  NMR probe of metallic states in nanoscale topological insulators. , 2013, Physical review letters.

[29]  Jens Hübner,et al.  SPIN INJECTION INTO SEMICONDUCTORS , 1999 .

[30]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[31]  Y. Ota,et al.  p -shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field , 2016, 1601.03480.

[32]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[33]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Gavin W. Morley,et al.  Electronic Spin Storage in an Electrically Readable Nuclear Spin Memory with a Lifetime >100 Seconds , 2010, Science.

[35]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[36]  Kang L. Wang,et al.  Electrical detection of spin-polarized surface states conduction in (Bi(0.53)Sb(0.47))2Te3 topological insulator. , 2014, Nano letters.

[37]  A. Greilich,et al.  Nuclei-Induced Frequency Focusing of Electron Spin Coherence , 2007, Science.

[38]  Kouwenhoven,et al.  Local dynamic nuclear polarization using quantum point contacts. , 1994, Physical review letters.

[39]  Thaddeus D. Ladd,et al.  Coherence time of decoupled nuclear spins in silicon , 2005 .

[40]  A. Imamoğlu,et al.  Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments , 2009, 0901.2289.

[41]  A. Badolato,et al.  Dynamics of quantum dot nuclear spin polarization controlled by a single electron. , 2007, Physical review letters.

[42]  V. Sverdlov,et al.  SPIN INJECTION INTO SEMICONDUCTORS , 2013 .

[43]  G. Platero,et al.  Hyperfine interactions in two-dimensional HgTe topological insulators , 2013, 1304.5096.

[44]  B. Young,et al.  Probing the bulk electronic states of Bi2Se3 using nuclear magnetic resonance , 2012 .

[45]  Dynamic nuclear spin polarization in an all-semiconductor spin injection device with (Ga,Mn)As/n-GaAs spin Esaki diode , 2012 .

[46]  M. N. Makhonin,et al.  Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.

[47]  Topological insulator based spin valve devices: Evidence for spin polarized transport of spin-momentum-locked topological surface states , 2014, 1403.1292.

[48]  K. Klitzing,et al.  Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor , 2002, Nature.

[49]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[50]  N. Samarth,et al.  Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator , 2015, 1507.07063.

[51]  Mikhail I. Dyakonov Spin physics in semiconductors , 2008 .

[52]  J. Toboła,et al.  Calculating electron transport coefficients of disordered alloys using the KKR-CPA method and Boltzmann approach: Application to Mg2Si1−xSnxthermoelectrics , 2013 .

[53]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[54]  G. Slavcheva,et al.  Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures , 2010 .

[55]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[56]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[57]  Kikkawa,et al.  All-optical magnetic resonance in semiconductors , 2000, Science.

[58]  Andrea Morello,et al.  Single-shot readout and relaxation of singlet and triplet states in exchange-coupled 31P electron spins in silicon. , 2014, Physical review letters.

[59]  S. Datta,et al.  Modeling potentiometric measurements in topological insulators including parallel channels , 2012 .

[60]  R. Cava,et al.  Low carrier concentration crystals of the topological insulator Bi$_2$Te$_2$Se , 2011, 1112.1648.

[61]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[62]  Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se , 2015, Scientific reports.

[63]  C. Latta,et al.  Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. , 2011, Physical review letters.

[64]  J. Robinson,et al.  Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. , 2014, Nature nanotechnology.

[65]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[66]  M. N. Makhonin,et al.  Dynamics of optically induced nuclear spin polarization in individual InP/Ga x In 1-x P quantum dots , 2010 .

[67]  Kang L. Wang,et al.  Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators , 2015, Proceedings of the National Academy of Sciences.