Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility

The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed.

[1]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[2]  A. Schmitt Absolutely Uniform Illumination of Laser Fusion Pellets. , 1984 .

[3]  A Finite Difference Scheme for the Heat Conduction Equation , 1985 .

[4]  J. P. Watteau,et al.  Laser program development at CEL-V: overview of recent experimental results , 1986 .

[5]  J. Meyer-ter-Vehn,et al.  MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics , 1988 .

[6]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[7]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[8]  Denis G. Colombant,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[9]  Jun Xiao,et al.  Conditions for perfectly uniform irradiation of spherical laser fusion targets , 1998 .

[10]  S. Skupsky,et al.  Irradiation uniformity for high-compression laser-fusion experiments , 1999 .

[11]  R. Town,et al.  Analysis of a direct-drive ignition capsule designed for the National Ignition Facility , 2001 .

[12]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[13]  Stefano Atzeni,et al.  Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams , 2002 .

[14]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[15]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[16]  B. Canaud,et al.  Progress in direct-drive fusion studies for the Laser Mégajoule , 2004 .

[17]  R. Craxton Polar Direct Drive---Proof-of-Principle Experiments on OMEGA , 2004 .

[18]  Mike Dunne,et al.  A high-power laser fusion facility for Europe , 2006 .

[19]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[20]  M. Houry,et al.  High-gain direct-drive inertial confinement fusion for the Laser Mégajoule: recent progress , 2007 .

[21]  Stefano Atzeni,et al.  Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .

[22]  N Lecler,et al.  High-gain direct-drive laser fusion with indirect drive beam layout of Laser Mégajoule , 2007 .

[23]  G. Schurtz,et al.  Implosion symmetry of laser-irradiated cylindrical targets , 2008 .

[24]  Rafael Ramis,et al.  MULTI2D - a computer code for two-dimensional radiation hydrodynamics , 2009, Comput. Phys. Commun..

[25]  Brian James Albright,et al.  Progress and prospects of ion-driven fast ignition , 2009 .

[26]  J. Meyer-ter-Vehn,et al.  Fast ignition of inertial fusion targets by laser-driven carbon beams , 2009, 0909.0342.

[27]  Edward I. Moses The National Ignition Facility and the Promise of Inertial Fusion Energy , 2010 .

[28]  Charles Lion,et al.  The LMJ program: An overview , 2010 .

[29]  Masakatsu Murakami,et al.  Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation , 2010 .

[30]  B. Canaud,et al.  High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule , 2010 .

[31]  B. Canaud,et al.  Systematic Analysis of Direct-Drive Baseline Designs for Shock-Ignition with the Laser Megajoule , 2011 .

[32]  M. Temporal,et al.  Direct-drive shock-ignition for the Laser MégaJoule , 2011 .

[33]  S. Laffite,et al.  Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme , 2011 .

[34]  Rafael Ramis,et al.  Symmetry issues in Directly Irradiated Targets , 2011 .

[35]  R. Ramis,et al.  MULTI-fs - A computer code for laser-plasma interaction in the femtosecond regime , 2012, Comput. Phys. Commun..

[36]  R. Fedosejevs,et al.  Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel , 2012 .

[37]  S. Laffite,et al.  2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule , 2012 .

[38]  M. Schmitt,et al.  An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility , 2012 .

[39]  S. Laffite,et al.  Marginally igniting direct-drive target designs for the laser megajoule , 2013 .

[40]  Rafael Ramis,et al.  Polar direct drive illumination uniformity provided by the Orion facility , 2013 .

[41]  R. Ramis Hydrodynamic analysis of laser-driven cylindrical implosions , 2013 .

[42]  Rafael Ramis,et al.  Numerical analysis of the direct drive illumination uniformity for the Laser MegaJoule facility , 2014 .

[43]  Rafael Ramis,et al.  Irradiation uniformity at the Laser MegaJoule facility in the context of the shock ignition scheme , 2014, High Power Laser Science and Engineering.

[44]  B. Canaud,et al.  Low initial aspect-ratio direct-drive target designs for shock- or self-ignition in the context of the laser Megajoule , 2014 .