Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator

We propose and analyze a decoupled time-marching scheme for the coupling of the Landau–Lifshitz–Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and nonmagnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.

[1]  Asya Shpiro,et al.  Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers , 2003 .

[2]  P Crozat,et al.  Current-driven vortex oscillations in metallic nanocontacts. , 2007, Physical review letters.

[3]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[4]  Dirk Praetorius,et al.  A decoupled and unconditionally convergent linear FEM integrator for the Landau–Lifshitz–Gilbert equation with magnetostriction , 2014 .

[5]  Michael Karkulik,et al.  L2-orthogonal projections onto finite elements on locally refined meshes are H1-stable , 2013, 1307.0917.

[6]  Andreas Prohl,et al.  Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..

[7]  D. C. Ralph,et al.  Magnetoresistance and spin-transfer torque in magnetic tunnel junctions , 2008 .

[8]  Andreas Prohl,et al.  Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..

[9]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[10]  Michael Karkulik,et al.  ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆ , 2013, Engineering analysis with boundary elements.

[11]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[12]  François Alouges,et al.  A new finite element scheme for Landau-Lifchitz equations , 2008 .

[13]  D. Praetorius,et al.  A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equation , 2013, 1303.4009.

[14]  F. Alouges,et al.  A convergent and precise finite element scheme for Landau–Lifschitz–Gilbert equation , 2012, Numerische Mathematik.

[15]  Johnson,et al.  Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. , 1988, Physical review. B, Condensed matter.

[16]  Andreas Prohl,et al.  A Convergent Implicit Finite Element Discretization of the Maxwell-Landau-Lifshitz-Gilbert Equation , 2008, SIAM J. Numer. Anal..

[17]  Sören Bartels,et al.  Projection-free approximation of geometrically constrained partial differential equations , 2015, Math. Comput..

[18]  Dirk Praetorius,et al.  Analysis of the Operator Δ^-1div Arising in Magnetic Models , 2004 .

[19]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[20]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[21]  Thanh Tran,et al.  A convergent finite element approximation for the quasi-static Maxwell-Landau-Lifshitz-Gilbert equations , 2012, Comput. Math. Appl..

[22]  Sören Bartels,et al.  Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..

[23]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[24]  T. Tran,et al.  On a decoupled linear FEM integrator for eddy-current-LLG , 2013, 1306.3319.

[25]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[26]  François Alouges,et al.  CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU¿LIFSHITZ EQUATIONS IN MICROMAGNETISM , 2006 .

[27]  Carlos J. García-Cervera,et al.  SPIN-POLARIZED TRANSPORT: EXISTENCE OF WEAK SOLUTIONS , 2006 .

[28]  van Son PC,et al.  Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. , 1987, Physical review letters.

[29]  Michael Feischl,et al.  Multiscale modeling in micromagnetics: Existence of solutions and numerical integration , 2012, 1209.5548.

[30]  Carlos J. García-Cervera,et al.  Spin-polarized currents in ferromagnetic multilayers , 2007, J. Comput. Phys..

[31]  A. M. Roma,et al.  Adaptive mesh refinement for micromagnetics simulations , 2006, IEEE Transactions on Magnetics.

[32]  Fert,et al.  Theory of the perpendicular magnetoresistance in magnetic multilayers. , 1993, Physical review. B, Condensed matter.

[33]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .