The Efficient Generation of Simple Two-Dimensional Adaptive Grids

We present an efficient adaptive procedure for solving steady partial differential equations based on the simple two-dimensional quadrilateral grid generator of Huang and Sloan [SIAM J. Sci. Comput., 15 (1994), pp. 776--797]. The mesh equations are derived using an equidistribution principle and are discretized in the physical domain. This allows the application of the adaptive grid generator to finite element and finite volume methods. To efficiently solve the nonlinear algebraic equations describing the adapted grid, we propose an alternating line Gauss--Seidel relaxation procedure. The beneficial effect of adaptive grids is demonstrated by coupling the grid generator to finite volume and finite difference approximations of advection and advection-diffusion test problems. For some examples the proposed method is shown to be 50 times more efficient than previously used solution procedures.

[1]  K. W. Morton,et al.  A finite volume scheme with shock fitting for the steady euler equations , 1989 .

[2]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[3]  C. Wayne Mastin,et al.  Elliptic systems and numerical transformations , 1978 .

[4]  Weizhang Huang,et al.  Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .

[5]  Weizhang Huang,et al.  Pseudospectral Solution of Near-Singular Problems using Numerical Coordinate Transformations Based on Adaptivity , 1998, SIAM J. Sci. Comput..

[6]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[7]  Weizhang Huang,et al.  A Simple Adaptive Grid Method in Two Dimensions , 1994, SIAM J. Sci. Comput..

[8]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[9]  E. Dorfi,et al.  Simple adaptive grids for 1-d initial value problems , 1987 .

[10]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[11]  K. W. Morton,et al.  Finite volume solutions of convection-diffusion test problems , 1993 .

[12]  H. Dwyer Grid adaption for problems in fluid dynamics , 1984 .

[13]  Y. Kallinderis,et al.  Adaptation methods for a new Navier-Stokes algorithm , 1989 .

[14]  E. Süli,et al.  The accuracy of cell vertex finite volume methods on quadrilateral meshes , 1992 .

[15]  Nigel P. Weatherill,et al.  Adaptivity for compressible flow computations using point embedding on 2-D structured multiblock meshes , 1991 .

[16]  Yih Nen Jeng,et al.  Truncation error analysis of the finite volume method for a model steady convective equation , 1992 .

[17]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[18]  D. Anderson,et al.  Generating adaptive grids with a conventional grid scheme , 1986 .

[19]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[20]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[21]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[22]  Victor Pereyra,et al.  Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .

[23]  Endre Süli,et al.  A posteriori error estimates for the cell-vertex finite volume method , 1994 .

[24]  P. R. Eiseman,et al.  Alternating direction adaptive grid generation , 1983 .