Characterisation of Growth and Ultrastructural Effects of the Xanthoria elegans Photobiont After 1.5 Years of Space Exposure on the International Space Station

[1]  D. Wharton Anhydrobiosis , 2015, Current Biology.

[2]  F. J. Sánchez,et al.  Effects of UVC254 nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa , 2014, International Journal of Astrobiology.

[3]  S. Onofri,et al.  Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS , 2014, International Journal of Astrobiology.

[4]  F. J. Sánchez,et al.  Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research II. Secondary Lichen Compounds , 2013, Origins of Life and Evolution of Biospheres.

[5]  G. Horneck,et al.  UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances , 2013, International Journal of Astrobiology.

[6]  P. Rettberg,et al.  Biofilm and Planktonic Lifestyles Differently Support the Resistance of the Desert Cyanobacterium Chroococcidiopsis Under Space and Martian Simulations , 2013, Origins of Life and Evolution of Biospheres.

[7]  F. J. Sánchez,et al.  Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics , 2013, Origins of Life and Evolution of Biospheres.

[8]  Eva Mateo-Martí,et al.  The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile , 2012 .

[9]  G. Horneck,et al.  LIFE Experiment: Isolation of Cryptoendolithic Organisms from Antarctic Colonized Sandstone Exposed to Space and Simulated Mars Conditions on the International Space Station , 2012, Origins of Life and Evolution of Biospheres.

[10]  G. Horneck,et al.  EXPOSE-E: an ESA astrobiology mission 1.5 years in space. , 2012, Astrobiology.

[11]  Elke Rabbow,et al.  Survival of rock-colonizing organisms after 1.5 years in outer space. , 2012, Astrobiology.

[12]  G. Horneck,et al.  Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission. , 2012, Astrobiology.

[13]  G. Reitz,et al.  Cosmic radiation exposure of biological test systems during the EXPOSE-E mission. , 2012, Astrobiology.

[14]  M. Barták,et al.  Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. , 2012, Cryobiology.

[15]  G. Horneck,et al.  Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. , 2011, Astrobiology.

[16]  Elke Rabbow,et al.  Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth , 2011, The ISME Journal.

[17]  G. Horneck,et al.  Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments , 2010 .

[18]  Andreas Lorek,et al.  Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. , 2010, Astrobiology.

[19]  D. Klaus,et al.  Space Microbiology , 2010, Microbiology and Molecular Biology Reviews.

[20]  C. Cockell,et al.  Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit , 2010, Applied and Environmental Microbiology.

[21]  K. Solhaug,et al.  Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments , 2010, Planta.

[22]  S. Ott,et al.  Resistance of Symbiotic Eukaryotes , 2010 .

[23]  S. Ott,et al.  Resistance of symbiotic eukaryotes: survival to simulated space conditions and asteroid impact cataclysms , 2010 .

[24]  R. Beckett,et al.  Desiccation-Tolerance in Lichens: A Review , 2008 .

[25]  S. Ott,et al.  Life at the Limits: Capacities of Isolated and Cultured Lichen Symbionts to Resist Extreme Environmental Stresses , 2008, Origins of Life and Evolution of Biospheres.

[26]  G. Horneck,et al.  Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. , 2008, Astrobiology.

[27]  G. Horneck,et al.  Lichens survive in space: results from the 2005 LICHENS experiment. , 2007, Astrobiology.

[28]  G. Horneck,et al.  Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets , 2007 .

[29]  Elke Rabbow,et al.  BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem , 2007 .

[30]  G. Reitz,et al.  Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans , 2007 .

[31]  Y. Gauslaa,et al.  Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen , 2005 .

[32]  R. Honegger,et al.  Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens , 1996, Protoplasma.

[33]  C. Ascaso,et al.  Ultrastructural changes in the pyrenoid of the lichenParmelia sulcata stored under controlled conditions , 1987, Protoplasma.

[34]  L. Sancho,et al.  Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. , 2004, FEMS microbiology ecology.

[35]  W. Bilger,et al.  The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats , 2004, Oecologia.

[36]  K. Solhaug,et al.  Photoinhibition in lichens depends on cortical characteristics and hydration , 2004, The Lichenologist.

[37]  K. Solhaug,et al.  Parietin, a photoprotective secondary product of the lichen Xanthoria parietina , 1996, Oecologia.

[38]  G. Horneck,et al.  May lichens serve as shuttles for their bionts in space , 2004 .

[39]  L. Selbmann,et al.  Antarctic microfungi as models for exobiology , 2004 .

[40]  G Horneck,et al.  The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[41]  R. Honegger The Impact of Different Long‐Term Storage Conditions on the Viability of Lichen‐Forming Ascomycetes and their Green Algal Photobiont, Trebouxia spp. , 2003 .

[42]  W. Bilger,et al.  UV‐induction of sun‐screening pigments in lichens , 2003 .

[43]  G. Horneck,et al.  The potential of the lichen symbiosis to cope with extreme conditions of outer space – I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity , 2002, International Journal of Astrobiology.

[44]  P. Crittenden Lichens of Antarctica and South Georgia: a guide to their identification and ecology by D.O. Øvstedal and R.I. Lewis Smith Studies in Polar Research series. Cambridge University Press, (2001). ISBN 0521 66241 9. £70.00 (US$100.00). , 2002, Antarctic Science.

[45]  C. Ascaso,et al.  Study of lichens with different state of hydration by the combination of low temperature scanning electron and confocal laser scanning microscopies. , 1999, International microbiology : the official journal of the Spanish Society for Microbiology.

[46]  F. Valladares,et al.  NEW ULTRASTRUCTURAL ASPECTS OF PYRENOIDS OF THE LICHEN PHOTOBIONT TREBOUXZA (MICROTHAMNIALES, CHLOROPHYTA) 1 , 1995 .

[47]  C. Ascaso,et al.  The Effect of Desiccation on Pyrenoid Structure in the Oceanic Lichen Parmelia Laevigata , 1988, The Lichenologist.

[48]  V. Ahmadjian A Guide to the Algae Occurring as Lichen Symbionts: Isolation, Culture, Cultural Physiology, and Identification , 1967 .