VitalVizor: A Visual Analytics System for Studying Urban Vitality

Creating lively places with high urban vitality is an ultimate goal for urban planning and design. The VitalVizor visual analytics system employs well-established visualization and interaction techniques to facilitate user exploration of spatial physical entities and non-spatial urban design metrics when studying urban vitality.

[1]  Alan Penn,et al.  Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement , 1993 .

[2]  Wei Zeng,et al.  A visual analytics design for studying rhythm patterns from human daily movement data , 2017, Vis. Informatics.

[3]  B. Jiang,et al.  Integration of space syntax into GIS for modelling urban spaces , 2000 .

[4]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[5]  Meta Berghauser Pont,et al.  Spacematrix: Space, Density and Urban Form , 2010 .

[6]  C. Ratti Space Syntax: Some Inconsistencies , 2004 .

[7]  William Ribarsky,et al.  Legible Cities: Focus-Dependent Multi-Resolution Visualization of Urban Relationships , 2007, IEEE Transactions on Visualization and Computer Graphics.

[8]  Stefan Müller Arisona,et al.  StreetVizor: Visual Exploration of Human-Scale Urban Forms Based on Street Views , 2018, IEEE Transactions on Visualization and Computer Graphics.

[9]  Gerd Hesina,et al.  Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for Visibility-Aware Urban Planning , 2017, IEEE Transactions on Visualization and Computer Graphics.

[10]  William Ribarsky,et al.  Urban Space Explorer: A Visual Analytics System for Urban Planning , 2017, IEEE Computer Graphics and Applications.

[11]  Cláudio T. Silva,et al.  Urbane: A 3D framework to support data driven decision making in urban development , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[12]  Yu Ye,et al.  How block density and typology affect urban vitality: an exploratory analysis in Shenzhen, China , 2018 .

[13]  Eduard Gröller,et al.  Run Watchers: Automatic Simulation-Based Decision Support in Flood Management , 2014, IEEE Transactions on Visualization and Computer Graphics.

[14]  Geoff Boeing,et al.  OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks , 2016, Comput. Environ. Urban Syst..

[15]  Sybil Derrible,et al.  A protocol to convert spatial polyline data to network formats and applications to world urban road networks , 2016, Scientific Data.

[16]  Sybil Derrible,et al.  Impact analysis of extreme events on flows in spatial networks , 2014, 2014 IEEE International Conference on Big Data (Big Data).