CLASSY III. The Properties of Starburst-driven Warm Ionized Outflows

We report the results of analyses of galactic outflows in a sample of 45 low-redshift starburst galaxies in the COS Legacy Archive Spectroscopic SurveY (CLASSY), augmented by five additional similar starbursts with Cosmic Origins Spectrograph (COS) data. The outflows are traced by blueshifted absorption lines of metals spanning a wide range of ionization potential. The high quality and broad spectral coverage of CLASSY data enable us to disentangle the absorption due to the static interstellar medium (ISM) from that due to outflows. We further use different line multiplets and doublets to determine the covering fraction, column density, and ionization state as a function of velocity for each outflow. We measure the outflow’s mean velocity and velocity width, and find that both correlate in a highly significant way with the star formation rate, galaxy mass, and circular velocity over ranges of four orders of magnitude for the first two properties. We also estimate outflow rates of metals, mass, momentum, and kinetic energy. We find that, at most, only about 20% of silicon created and ejected by supernovae in the starburst is carried out in the warm phase we observe. The outflows’ mass-loading factor increases steeply and inversely with both circular and outflow velocity (log–log slope ∼−1.6), and reaches ∼10 for dwarf galaxies. We find that the outflows typically carry about 10%–100% of the momentum injected by massive stars and about 1%–20% of the kinetic energy. We show that these results place interesting constraints on, and new insights into, models and simulations of galactic winds.

[1]  G. Bryan,et al.  The Structure of Multiphase Galactic Winds , 2021, The Astrophysical Journal.

[2]  T. Thompson,et al.  The characteristic momentum of radiatively cooling energy-driven galactic winds , 2020, 2011.06004.

[3]  N. Panagia,et al.  The Effects of Biconical Outflows on Lyα Escape from Green Peas , 2020, 2011.02549.

[4]  J. Howk,et al.  The Cosmic Baryon and Metal Cycles , 2020, Annual Review of Astronomy and Astrophysics.

[5]  E. Ostriker,et al.  A Framework for Multiphase Galactic Wind Launching Using TIGRESS , 2020, The Astrophysical Journal.

[6]  C. Kobayashi,et al.  The Origin of Elements from Carbon to Uranium , 2020, The Astrophysical Journal.

[7]  J. Prochaska,et al.  Circumgalactic Mg ii Emission from an Isotropic Starburst Galaxy Outflow Mapped by KCWI , 2020, 2005.03017.

[8]  G. Zhu,et al.  A Systematic Study of Galactic Outflows via Fluorescence Emission: Implications for Their Size and Structure , 2020, The Astrophysical Journal.

[9]  J. V'ilchez,et al.  Chemodynamics of green pea galaxies – I. Outflows and turbulence driving the escape of ionizing photons and chemical enrichment , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  B. Robertson,et al.  The Physical Nature of Starburst-driven Galactic Outflows , 2020, The Astrophysical Journal.

[11]  G. Ferland,et al.  Newly Improved Ionization Corrections for the Neutral Interstellar Medium: Enabling Accurate Abundance Determinations in Star-forming Galaxies throughout the Universe , 2020, The Astrophysical Journal.

[12]  A. Bolatto,et al.  Cool outflows in galaxies and their implications , 2020, The Astronomy and Astrophysics Review.

[13]  S. Oh,et al.  How cold gas continuously entrains mass and momentum from a hot wind , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  H. Dahle,et al.  Constraining the Metallicities, Ages, Star Formation Histories, and Ionizing Continua of Extragalactic Massive Star Populations , 2019, The Astrophysical Journal.

[15]  M. Ouchi,et al.  Fast Outflows Identified in Early Star-forming Galaxies at z = 5–6 , 2019, The Astrophysical Journal.

[16]  R. Thomas Specstack: A simple spectral stacking tool , 2019 .

[17]  F. Mannucci,et al.  De re metallica: the cosmic chemical evolution of galaxies , 2018, The Astronomy and Astrophysics Review.

[18]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  C. Benn,et al.  VLT/X-Shooter Survey of BAL Quasars: Large Distance Scale and AGN Feedback , 2018, The Astrophysical Journal.

[20]  C. Leitherer,et al.  Metal-enriched galactic outflows shape the mass–metallicity relationship , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  Gregory M. Green,et al.  dustmaps: A Python interface for maps of interstellar dust , 2018, J. Open Source Softw..

[22]  M. Bogosavljevic,et al.  The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z ∼ 3 , 2018, The Astrophysical Journal.

[23]  N. Panagia,et al.  A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry , 2018, The Astrophysical Journal.

[24]  C. Benn,et al.  A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations , 2018, 1805.01545.

[25]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[26]  B. Robertson,et al.  Production of Cool Gas in Thermally Driven Outflows , 2018, The Astrophysical Journal.

[27]  J. Rigby,et al.  Neutral gas properties of Lyman continuum emitting galaxies: Column densities and covering fractions from UV absorption lines , 2018, Astronomy & Astrophysics.

[28]  E. Ostriker,et al.  Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model , 2018, 1801.03952.

[29]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[30]  G. Fűrész,et al.  The Sunburst Arc: Direct Lyman α escape observed in the brightest known lensed galaxy , 2017, 1710.09482.

[31]  Lihwai Lin,et al.  Evolution of Galactic Outflows at Revealed with SDSS, DEEP2, and Keck Spectra , 2017, 1703.01885.

[32]  Claus Leitherer,et al.  The mass and momentum outflow rates of photoionized galactic outflows , 2017, 1702.07351.

[33]  J. Ostriker,et al.  Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.

[34]  G. Cecil,et al.  Scaling Relations of Starburst-driven Galactic Winds , 2016, 1608.05342.

[35]  C. Leitherer,et al.  A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090 , 2016, 1605.05769.

[36]  S. Charlot,et al.  Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016, 1603.03037.

[37]  Claus Leitherer,et al.  Shining a light on galactic outflows: photoionized outflows , 2016, 1601.05090.

[38]  D. Weinberg,et al.  An origin for multiphase gas in galactic winds and haloes , 2015, 1507.04362.

[39]  R. Davé,et al.  Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey , 2015, 1503.02084.

[40]  Benjamin J. Weiner,et al.  A transition mass in the local Tully–Fisher relation , 2015, 1506.04144.

[41]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[42]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[43]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[44]  D. Weinberg,et al.  The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.

[45]  G. Kauffmann,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[46]  J. Brinchmann,et al.  ABSORPTION-LINE PROBES OF THE PREVALENCE AND PROPERTIES OF OUTFLOWS IN PRESENT-DAY STAR-FORMING GALAXIES , 2010, 1003.5425.

[47]  J. Sólyom,et al.  Structure and dynamics , 2010 .

[48]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[49]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[50]  C. Leitherer,et al.  OBSERVATIONS OF STARBURST GALAXIES WITH FAR-ULTRAVIOLET SPECTROGRAPHIC EXPLORER: GALACTIC FEEDBACK IN THE LOCAL UNIVERSE , 2009 .

[51]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[52]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[53]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[54]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[55]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. I. Sample, Na I D Spectra, and Profile Fitting , 2005, astro-ph/0506610.

[56]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[57]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[58]  Stsci,et al.  X-Ray/Ultraviolet Campaign on the Mrk 279 AGN Outflow: Constraining Inhomogeneous Absorber Models , 2004, astro-ph/0406200.

[59]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[60]  K. Freeman,et al.  The Baryonic Tully-Fisher Relation , 1999, The Astrophysical journal.

[61]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[62]  D. York,et al.  Intermediate- and High-Velocity Ionized Gas toward ζ Orionis , 2002, astro-ph/0208374.

[63]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[64]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[65]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[66]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[67]  J. Bland-Hawthorn,et al.  The Asymmetric Wind in M82 , 1997, astro-ph/9708038.

[68]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[69]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[70]  Boqi Wang Cooling gas outflows from galaxies , 1994, astro-ph/9412033.

[71]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[72]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[73]  R. Chevalier,et al.  Wind from a starburst galaxy nucleus , 1985, Nature.