Shape in Picture
暂无分享,去创建一个
Alexander Toet | Henk J. A. M. Heijmans | Peter Meer | David H. Foster | O. Ying-Lie | D. Foster | P. Meer | H. Heijmans | A. Toet | O. Ying-Lie
[1] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[2] Albert Cohen,et al. Biorthogonal wavelets , 1993 .
[3] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[4] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[5] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[6] R. V. Benson. Euclidean Geometry and Convexity , 1966 .
[7] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[8] G. Strang,et al. Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .
[9] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[10] Ronald A. DeVore,et al. Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.
[11] A. Latto,et al. Compactly supported wavelets and the numerical solution of Burgers' equation , 1990 .
[12] Zuowei Shen,et al. Wavelets and pre-wavelets in low dimensions , 1992 .
[13] Stéphane Mallat,et al. Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..
[14] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[15] G. Weiss,et al. Littlewood-Paley Theory and the Study of Function Spaces , 1991 .
[16] Stéphane Mallat,et al. Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..
[17] Robert Piessens,et al. Calculation of the wavelet decomposition using quadrature formulae , 1992 .
[18] P. Franklin. A set of continuous orthogonal functions , 1928 .
[19] Tom H. Koornwinder. The Continuous Wavelet Transform , 1993 .
[20] Stéphane Mallat,et al. Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.
[21] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[22] Z. Ciesielski. Constructive function theory and spline systems , 1975 .
[23] P. G. Lemari'e,et al. Ondelettes `a localisation exponentielle , 1988 .
[24] Pijush K. Ghosh,et al. A Solution of Polygon Containment, Spatial Planning, and Other Related Problems Using Minkowski Operations , 1990, Comput. Vis. Graph. Image Process..
[25] R. Coifman. A real variable characterization of $H^{p}$ , 1974 .
[26] Felix Klein. Elementary Mathematics from an Advanced Standpoint: Geometry , 1941 .
[27] J. Stöckler. Multivariate wavelets , 1993 .
[28] Y. Meyer,et al. Ondelettes et bases hilbertiennes. , 1986 .
[29] A. Grossmann,et al. DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .
[30] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[31] Y. Maday,et al. ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .
[32] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..
[33] W. Sweldens,et al. Asymptotic error expansion of wavelet approximations of smooth functions II , 1994 .
[34] B. Jawerth,et al. The φ-transform and applications to distribution spaces , 1988 .
[35] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[36] Pijush K. Ghosh,et al. A unified computational framework for Minkowski operations , 1993, Comput. Graph..
[37] C. Chui. Wavelets: A Tutorial in Theory and Applications , 1992 .
[38] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[39] Pijush K. Ghosh,et al. An algebra of polygons through the notion of negative shapes , 1991, CVGIP Image Underst..
[40] M. Kline. Mathematical Thought from Ancient to Modern Times , 1972 .
[41] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[42] S. Jaffard,et al. Orthonormal wavelets, analysis of operators, and applications to numerical analysis , 1993 .
[43] W. Sweldens. Wavelets and Their Applications, M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael, Eds., Jones and Bartlett, 1992, xiii + 474 pp. , 1993 .
[44] A. Cohen,et al. Compactly supported bidimensional wavelet bases with hexagonal symmetry , 1993 .