Shape in Picture

An object is defined from which digital spaces can be built. It combines the "one-dimensional connectedness" of intervals of reals with a "point-bypoint" quality necessary for constructing algorithms, and thus serves as a foundation for digital topology. Ideas expressed in quotation marks here are given precise meanings. This study considers the Khalimsky line, that is, the integers, equipped with the topology in which a set is open iff whenever it contains an even integer, it also contains its adjacent integers. It is shown that this space and its interval subspaces are those satisfying the conditions mentioned previously. The Khalimsky line is used to study digital connectedness and homotopy.

[1]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[2]  Albert Cohen,et al.  Biorthogonal wavelets , 1993 .

[3]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[4]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[5]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[6]  R. V. Benson Euclidean Geometry and Convexity , 1966 .

[7]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[8]  G. Strang,et al.  Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .

[9]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[10]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[11]  A. Latto,et al.  Compactly supported wavelets and the numerical solution of Burgers' equation , 1990 .

[12]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[13]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[15]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[16]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Robert Piessens,et al.  Calculation of the wavelet decomposition using quadrature formulae , 1992 .

[18]  P. Franklin A set of continuous orthogonal functions , 1928 .

[19]  Tom H. Koornwinder The Continuous Wavelet Transform , 1993 .

[20]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[21]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[22]  Z. Ciesielski Constructive function theory and spline systems , 1975 .

[23]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[24]  Pijush K. Ghosh,et al.  A Solution of Polygon Containment, Spatial Planning, and Other Related Problems Using Minkowski Operations , 1990, Comput. Vis. Graph. Image Process..

[25]  R. Coifman A real variable characterization of $H^{p}$ , 1974 .

[26]  Felix Klein Elementary Mathematics from an Advanced Standpoint: Geometry , 1941 .

[27]  J. Stöckler Multivariate wavelets , 1993 .

[28]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[29]  A. Grossmann,et al.  DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .

[30]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[31]  Y. Maday,et al.  ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .

[32]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[33]  W. Sweldens,et al.  Asymptotic error expansion of wavelet approximations of smooth functions II , 1994 .

[34]  B. Jawerth,et al.  The φ-transform and applications to distribution spaces , 1988 .

[35]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[36]  Pijush K. Ghosh,et al.  A unified computational framework for Minkowski operations , 1993, Comput. Graph..

[37]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[38]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[39]  Pijush K. Ghosh,et al.  An algebra of polygons through the notion of negative shapes , 1991, CVGIP Image Underst..

[40]  M. Kline Mathematical Thought from Ancient to Modern Times , 1972 .

[41]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  S. Jaffard,et al.  Orthonormal wavelets, analysis of operators, and applications to numerical analysis , 1993 .

[43]  W. Sweldens Wavelets and Their Applications, M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael, Eds., Jones and Bartlett, 1992, xiii + 474 pp. , 1993 .

[44]  A. Cohen,et al.  Compactly supported bidimensional wavelet bases with hexagonal symmetry , 1993 .