Optimal reconstruction kernels in medical imaging
暂无分享,去创建一个
[1] A. Louis. Inverse und schlecht gestellte Probleme , 1989 .
[2] E. T. Quinto. Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform , 1988 .
[3] E. T. Quinto,et al. An Introduction to X-ray tomography and Radon Transforms , 2006 .
[4] Pierre Grangeat. Analyse d'un systeme d'imagerie 3d par reconstruction a partir de radiographies x en geometrie conique , 1987 .
[5] M. E. Davison,et al. Tomographic reconstruction with arbitrary directions , 1981 .
[6] H. Tuy. AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION* , 1983 .
[7] Alfred K. Louis,et al. A unified approach to regularization methods for linear ill-posed problems , 1999 .
[8] Hengyong Yu,et al. A unified framework for exact cone-beam reconstruction formulas. , 2005, Medical physics.
[9] Alfred K. Louis. Approximate inverse for linear and some nonlinear problems , 1995 .
[10] Peter Maass,et al. Contour reconstruction in 3-D X-ray CT , 1993, IEEE Trans. Medical Imaging.
[11] Rolf Clackdoyle,et al. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection , 1994, IEEE Trans. Medical Imaging.
[12] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[13] Andreas Rieder. On filter design principles in 2D computerized tomography , 2001 .
[14] A. K. Louis,et al. Approximate inversion of the 3 D radon transform , 1983 .
[15] Thomas Schuster. The 3D Doppler transform: elementary properties and computation of reconstruction kernels , 2000 .
[16] A. Cormack. Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .
[17] Peter Maass,et al. The x-ray transform: singular value decomposition and resolution , 1987 .
[18] L. Feldkamp,et al. Practical cone-beam algorithm , 1984 .
[19] A K Louis,et al. A novel filter design technique in 2D computerized tomography , 1996 .
[20] Andreas Rieder,et al. Incomplete data problems in X-ray computerized tomography , 1989 .
[21] Andreas Rieder,et al. Wavelets: Theory and Applications , 1997 .
[22] P. Grangeat. Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .
[23] R. Marr,et al. On Two Approaches to 3D Reconstruction in NMR Zeugmatography , 1981 .
[24] Eric Todd Quinto,et al. Mathematical Methods in Tomography , 2006 .
[25] A. Katsevich. Analysis of an exact inversion algorithm for spiral cone-beam CT. , 2002, Physics in medicine and biology.
[26] Peter Maaß,et al. Contour reconstructions for 3D X-Ray CT-Images , 1993 .
[27] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[28] J. Zweier,et al. Mapping the spin-density and lineshape distribution of free radicals using 4D spectral-spatial EPR imaging. , 1995, Journal of magnetic resonance. Series B.
[29] H. Kuo. Gaussian Measures in Banach Spaces , 1975 .
[30] Peter Maass,et al. A mollifier method for linear operator equations of the first kind , 1990 .
[31] Eric Todd Quinto,et al. Singularities of the X-ray transform and limited data tomography , 1993 .
[32] Alfred K. Louis. Orthogonal Function Series Expansions and the Null Space of the Radon Transform , 1984 .
[33] Alfred K. Louis,et al. Nonuniqueness in inverse radon problems: The frequency distribution of the ghosts , 1984 .
[34] A. Louis. Filter design in three-dimensional cone beam tomography: circular scanning geometry , 2003 .
[35] A. Louis,et al. Picture reconstruction from projections in restricted range , 1980 .
[36] Frank Natterer,et al. Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.