Azospirillum halopraeferens sp. nov., a Nitrogen-Fixing Organism Associated with Roots of Kallar Grass (Leptochloa fusca (L.) Kunth)

Among the nitrogen-fixing bacteria associated with the roots of Leptochloa fusca (L.) Kunth in salt-affected soils in the Punjab region of Pakistan, we found a homogeneous group of eight diazotrophs. Cells are vibrioid to S shaped, are motile by one polar flagellum, and produce granules of poly-β-hydroxybutyrate. They have a respiratory type of metabolism, show microaerophilic growth when fixing nitrogen, grow well on salts of organic acids, and can also use fructose and mannitol. On nitrogen-free semisolid media, they require biotin, utilize mannitol, but not glucose or sucrose, and cannot acidify glucose aerobically or anaerobically. Optimal growth occurs at 0.25% NaCl and 41°C. Deoxyribonucleic acid (DNA)-ribosomal ribonucleic acid (rRNA) hybridizations show that the organisms belong to the Azospirillum rRNA branch, where they cluster together with Azospirillum amazonense. They form a phenotypically and protein electrophoretically homogeneous group of bacteria, clearly distinct from Azospirillum amazonense, Azospirillum lipoferum, and Azospirillum brasilense. As no DNA-DNA binding was found with any of the three Azospirillum species, we propose a fourth Azospirillum species for this group of isolates. Because of better growth at increased NaCl concentrations, we named the new species Azospirillum halopraeferens. Strain Au 4 (= LMG 7108) is the type strain, which has been deposited at the Deutsche Sammlung von Mikroorganismen, Gottingen, Federal Republic of Germany, as DSM 3675.

[1]  T. Hurek,et al.  Close Association of Azospirillum and Diazotrophic Rods with Different Root Zones of Kallar Grass , 1986, Applied and environmental microbiology.

[2]  K. Kersters,et al.  Alcaligenes piechaudii, a New Species from Human Clinical Specimens and the Environment , 1986 .

[3]  B. Jarvis,et al.  Intra- and Intergeneric Similarities between the Ribosomal Ribonucleic Acid Cistrons of Rhizobium and Bradyrhizobium Species and Some Related Bacteria , 1986 .

[4]  P. Vos,et al.  Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. , 1985 .

[5]  Y. Okon Azospirillum as a potential inoculant for agriculture , 1985 .

[6]  T. Hurek,et al.  Strain-specific chemotaxis of Azospirillum spp , 1985, Journal of bacteriology.

[7]  P. Vos,et al.  Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species , 1985 .

[8]  C. R. McClung,et al.  Campylobacter nitrofigilis sp. nov., a Nitrogen-Fixing Bacterium Associated with Roots of Spartina alterniflora Loisel , 1983 .

[9]  K. Haahtela,et al.  Root-Associated N2 Fixation (Acetylene Reduction) by Enterobacteriaceae and Azospirillum Strains in Cold-Climate Spodosols , 1981, Applied and environmental microbiology.

[10]  J. Ley,et al.  Intra- and Intergeneric Similarities of Agrobacterium Ribosomal Ribonucleic Acid Cistrons , 1977 .

[11]  J. M. Day,et al.  Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites , 1976 .

[12]  M. Gillis,et al.  Determination of the molecular complexity of double-stranded phage genome DNA from initial renaturation rates. The effect of DNA base composition. , 1975, Journal of molecular biology.

[13]  G. M. Richards Modifications of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. , 1974, Analytical biochemistry.

[14]  J. M. Day,et al.  Nitrogenase Activity and Oxygen Sensitivity of the Paspalum notatum-Azotobacter paspali Association , 1972 .

[15]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[16]  J. Ley,et al.  Reexamination of the Association Between Melting Point, Buoyant Density, and Chemical Base Composition of Deoxyribonucleic Acid , 1970, Journal of bacteriology.

[17]  P. Doty,et al.  Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. , 1962, Journal of molecular biology.

[18]  J. Marmur A procedure for the isolation of deoxyribonucleic acid from micro-organisms , 1961 .

[19]  V. Baldani,et al.  Deoxyribonucleic and Ribonucleic Acid Homology Studies of the Genera Azospirillum and Conglomeromonas , 1986 .

[20]  V. Baldani,et al.  Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a Root-Associated Nitrogen-Fixing Bacterium , 1986 .

[21]  J. Johnson,et al.  Deoxyribonucleic Acid Homology of Azospirillum amazonense Magalhães et al. 1984 and Emendation of the Description of the Genus Azospirillum , 1985 .

[22]  K. Kersters 13 – Numerical Methods in the Classification of Bacteria by Protein Electrophoresis , 1985 .

[23]  D. Jones,et al.  Computer-assisted bacterial systematics , 1985 .

[24]  J. Sprent Effects of Drought and Salinity on Heterotrophic Nitrogen Fixing Bacteria and on Infection of Legumes by Rhizobia , 1984 .

[25]  Y. Dobereiner Ten years azospirillum , 1983 .

[26]  J. Baldani,et al.  new acid-tolerant Azospirillum species , 1983 .

[27]  P. Gerhardt Manual of methods for general bacteriology. , 1981 .

[28]  J. Ley,et al.  Intra- and Intergeneric Similarities of Ribosomal Ribonucleic Acid Cistrons of Free-Living, Nitrogen-Fixing Bacteria , 1980 .

[29]  M. Gillis,et al.  Intra- and Intergeneric Similarities of the Ribosomal Ribonucleic Acid Cistrons of Acetobacter and Gluconobacter , 1980 .

[30]  J. Dobereiner Forage grasses and grain crops. , 1980 .

[31]  F. Bergersen Methods for evaluating biological nitrogen fixation , 1980 .

[32]  J. Postgate The fundamentals of nitrogen fixation , 1978 .

[33]  J. Ley,et al.  The quantitative measurement of DNA hybridization from renaturation rates. , 1970, European journal of biochemistry.

[34]  M. Gillis,et al.  The determination of molecular weight of bacterial genome DNA from renaturation rates. , 1970, European journal of biochemistry.