A Real-Time Sound Rendering Algorithm for Complex Scenes

We present a novel output-sensitive algorithm for sound rendering of complex scenes, i.e. scenes that contain a large amount of sound sources. It allows walkthroughs of complex sound environments (such as a football stadium) in real-time and can be used for observer-dependent auralizations of global sound propagation. The algorithm is based on a stochastic sampling strategy similar to point based techniques used for rendering images. Typical applications of the technique are in virtual reality and computer games, especially to complement established output-sensitive algorithms for rendering visual

[1]  James F. O'Brien,et al.  Synthesizing Sounds from Physically Based Motion , 2001, SIGGRAPH Video Review on Animation Theater Program.

[2]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[3]  Chen Shen,et al.  Synthesizing sounds from rigid-body simulations , 2002, SCA '02.

[4]  Tapio Takala,et al.  Sound rendering , 1992, SIGGRAPH.

[5]  Thomas A. Funkhouser,et al.  Modeling acoustics in virtual environments using the uniform theory of diffraction , 2001, SIGGRAPH.

[6]  Thomas A. Funkhouser,et al.  Priority‐Driven Acoustic Modeling for Virtual Environments , 2000, Comput. Graph. Forum.

[7]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[8]  Friedhelm Meyer auf der Heide,et al.  The randomized z-buffer algorithm: interactive rendering of highly complex scenes , 2001, SIGGRAPH.

[9]  Claude Puech,et al.  Radiosity and global illumination , 1994 .

[10]  Markus H. Gross,et al.  Spatialized audio rendering for immersive virtual environments , 2002, VRST '02.

[11]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[12]  Nicolas Tsingos,et al.  Soundtracks for Computer Animation: Sound Rendering in Dynamic Environment with Occlusions , 1997, Graphics Interface.

[13]  Thomas A. Funkhouser,et al.  A beam tracing approach to acoustic modeling for interactive virtual environments , 1998, SIGGRAPH.

[14]  Dinesh K. Pai,et al.  FoleyAutomatic: physically-based sound effects for interactive simulation and animation , 2001, SIGGRAPH.

[15]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[16]  Thomas A. Funkhouser,et al.  SIGGRAPH 2002 Course Notes "Sounds Good to Me!" Computational Sound for Graphics, Virtual Reality, and Interactive Systems , 2002 .

[17]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[18]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[19]  J. Borish Extension of the image model to arbitrary polyhedra , 1984 .

[20]  Tapio Lokki,et al.  Virtual Environment Simulation - Advances in the DIVA project , 1997 .

[21]  Thomas A. Funkhouser,et al.  Real-time acoustic modeling for distributed virtual environments , 1999, SIGGRAPH.

[22]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[23]  Wolfgang Straßer,et al.  Multi‐Resolution Rendering of Complex Animated Scenes , 2002, Comput. Graph. Forum.

[24]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[25]  A. Krokstad,et al.  Calculating the acoustical room response by the use of a ray tracing technique , 1968 .